Tag Archives: CV XE GIS

Examining Health Care Infrastructure by ZIP Code

.. small area data providing information on sub-county and sub-city/place geographies are challenging to locate and use — particularly in context of demand for healthcare services and demographic attributes of associated neighborhoods. Develop insights into the healthcare infrastructure by ZIP code using the two related resources reviewed here — 1) individual ZIP code demographic-economic profiles and 2) ZIP code demographic-economic interactive tables. One way to examine the healthcare infrastructure for an area is to view/analyze the number and attributes (employment, earnings) of healthcare establishments by types of business/industry (such as physicians office or hospitals). Data and tools reviewed here provide insights into characteristics and patterns of national scope ZIP code areas — examine your ZIP codes of interest.

Option 1 — ZIP Code Profiles
.. examining the healthcare infrastructure in context of the related demographic-economic situation … the following graphic shows ZIP code 10514 (Westchester County, NY) with a bold red boundary.  Census tracts are shown with black boundaries with tract codes as white labels. See more about ZIP-Tract relationships. Cities/places are shown with blue cross-hatch pattern.

– view created with CV XE GIS software and related GIS project.

The above map graphic is part of a ZIP Code 10514 profile (click link to view complete profile). Section 3.1. of the profile shows the number healthcare establishments in the ZIP Code as partly shown in this graphic:

The portion of the table shows the NAICS/type of business code at left, followed by type of business description and the number of establishments at the right.

Examine other characteristics of this ZIP code profile and in context of others via this related Web section. These profiles update in May 2018.

Option 2 — ZIP Code Health Care Sector comparative analysis
.. examining the healthcare infrastructure for a set of ZIP codes in a state, metro, county or peer group … use the interactive table located here to view/rank/compare health care business establishments by type of business for a selected set of ZIP codes. This table shows a query placed on the table to show the total number of offices of physicians for ZIP codes in the vicinity of ZIP 10514. It shows that there are 14 offices of physicians establishments and 13 have 1-4 employees.

About These and Related ZIP Code Data
Data used to develop the tools/resources described above are based in part on the Census Bureau County Business Patterns program. These establishment data update annually.

ZIP code demographic-economic interactive tables
Use the following tables to examine a wide range of ZIP code demographic-economic conditions:
  • General Demographics
  • Social Characteristics
  • Economic Chacteristics
  • Housing CHaracteristics

Data Analytics Web Sessions
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Examining America’s Cities: Demographic-Economic Updates

.. of the approximate 29,500 U.S. cities and places — geographic areas of population concentration — 301 had an ACS 2016 5-year estimated population of 100,000 or more. The median household income among these places, one measure of economic prosperity, ranged from $26,249 (Detroit, MI) to $117,642 (Frisco, TX).

What are the demographic-economic characteristics of your cities/places of interest? How do these compare to peer groups or a metro/state of interest. Learn more using the new city/place demographic interactive tables. Its about more than economic prosperity — using these data provide otherwise unknowable attributes about the demographic, social, economic and housing characteristics of individual cities/places.

Visual Analysis of City/Place Population Dynamics
The following view shows patterns of population percent change by city in the Charlotte, NC/SC metro area.

… view developed using the CV XE GIS software.
… more about above view in City/Place Economic Characteristics section.

Patterns of Economic Prosperity ($MHI) by City/Place
— Northern Virginia, DC, Maryland; part of the Washington, DC metro.

… view developed using the CV XE GIS software.
… click graphic for larger view with places labeled by name and $MHI.

Interactive Tables — new January 2018
Use these interactive tables to get answers, build insights:
• General Demographics
• Social Characteristics
• Economic Characteristics — used to develop data at top of section
• Housing Characteristics
Related:
• City/Place GeoDemographics Main Section
• Annual City/Place Population Estimates & Trends
• Similar ACS tables: Census Tracts | ZIP Codes | State, Metro & County

More About City/Place GeoStatistical Data and Data Analytics
The term “places” as used here refers to incorporated places and Census Designated Places (CDPs). Incorporated places are political areas having certain governmental powers designated by the corresponding state. Unincorporated places, or Census Designated Places (CDPs), are statistical areas having no official standing and no governmental powers but are recognized as being areas of population concentration. Wide-ranging demographic-economic estimates are developed annually for the approximate 29,500 incorporated cities and CDPs based on the American Community Survey 5-year estimates. See more about the ACS 2016 5-year estimates.

Many cities have planning and data development operations that develop important local data including tax parcel data, building permit data, transportation and infrastructure data … bit generally not the data reviewed in this section. Many cities have no planning department to develop, organize and analyze geographic, demographic, economic data … making these data even more essential.

Increasingly in core sections of metropolitan areas, as shown in the above graphics, a large number of cities/places are contiguous. Many retain their own character evolving over many years. Having the detailed ACS demographic-economic data makes it possible to compare places side by side. Use the same data for related drill down geography such as census tracts and block groups to examine neighborhoods and market areas.

Data Analytics Web Sessions
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Metro 2016 Demographic-Economic Data Analytics: Social Characteristics

.. part one of four parts focused Metro 2016 Demographic-Economic Data Analytics.  This post is on Social Characteristics; ahead: general demographics, economic characteristics and housing characteristics. See related Web section.

Patterns of Educational Attainment by Metro
The following graphic shows patterns of educational attainment (percent college graduate) by Metropolitan Statistical Area (MSA). Legend shows color patterns associated with percent college graduate values.

– View developed using CV XE GIS software and associated GIS project.
– use these resources to develop similar views for any area.
– modify subjects, zoom, colors, labels, add your data.

A Selected Social Characteristic & How Metros Vary
In 2016, the U.S. percent college graduates was 31.3 percent (of the population ages 25 and over) while Metropolitan Statistical Areas (MSAs) ranged from 11.3% (Lake Havasu City-Kingman, AZ MSA) to 60.6% (Boulder, CO MSA). See item/column S067 in the interactive table to view, rank, compare, analyze metros based on this measure for 2016 … in context of related social characteristics. These data uniquely provide insights into many of the most important social characteristics.

Social Characteristics – Subject Matter Covered
– Households by Type
– Relationship
– Marital Status
– Fertility
– Grandparents
– School Enrollment
– Educational Attainment
– Veteran Status
– Disability Status
– Mobility; Residence 1 Year Ago
– Place of Birth
– Citizenship Status
– Year of Entry
– Region of Birth
– Language Spoken at Home
– Ancestry
– Computers & Internet Use

Metro Data Analytics
Use tools, resources and methods to access, integrate and analyze social characteristics for metropolitan areas or Core-Based Statistical Areas (CBSAs). The table includes data for 382 Metropolitan Statistical Areas (MSAs) and 129 Micropolitan Statistical Areas (MISAs). These data will update in September 2018.

Approximately 600 subject matter items from the American Community Survey ACS 2016 database (released September 2017) are included in these four pages/tables:
• General Demographics
• Social Characteristics — reviewed here
• Economic Characteristics
• Housing Characteristics
See related Metro Areas Population & Components of Change time series data.

Focusing on Specific Metros & Integrated Multi-sourced Data
While these data provide a good cross section of data on social characteristics, this access structure is a) for one time period and b) data sourced from one statistical program. Also, there is a lot going on in metros; these are typically large areas with many important and diverse smaller geographies such as cities, counties and neighborhoods among other others.

Use the Metropolitan Situation & Outlook (S&O) reports to develop extended insights. See this example of the Washington, DC MSA S&O Report. Examine trends and projections to 2030. Inegrate your own data.

Using the Interactive Table
The following example illustrates use of the metro social characteristics interactive table … try using it on areas of interest. This view, showing metros partly or entirely in Arizona, was first developed by using the state selection tool below the table Next the selected columns button the table is used to examine educational attainment columns/items. The final step was to click the header cell on the “S067” item to sort metros on percent college graduates. It is easy to determine that the Flagstaff metro has the highest percent college graduates (home to Northern Arizona University).

Data Analytics Web Sessions
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

School District Demographic Trends: 2010-2016

.. while enrollment in many school districts is growing, for many it is declining — these include some of the largest districts. Declining enrollment in school districts can result in school closings that destabilize neighborhoods, cause layoffs of essential staff and concerns that the students who remain are some of the neediest and most difficult to educate. See related narrative.

Based on total population, the largest 10 school districts in 2016 (see table below), all experienced an increase in population over the period 2010-2016. Five of these districts had a decrease in school age population (ages 5-17 years). Five of these districts had a decrease in the number of related children in poverty in families ages 5-17 years.

See the related Web section that provides tools to analyze annual demographic data for each U.S. school district for the period 2010 through 2016. This post summarizes selected details. These data include Census Bureau official 2016 estimates available for all districts. Developed for use as inputs for the ESEA Title I allocation formula, the data have broader uses of interest to school district demographics stakeholders. The 2016 estimates were released in November 2016; 2017 estimates become available in late 2018. ProximityOne uses these data in combination with other data to develop school district current estimates and annual projections through 2022 with related drill-down demographic-economic subject matter. Use the interactive table in the Web section to view, rank, compare demographic characteristics of districts of interest.

Largest 10 School Districts based on 2016 Population Age 5-17

Patterns of 2016 School Age Population in Poverty by School District
The graphic below shows school districts with total 2016 population of 1,000 or more by poverty incidence. Markers show the population ages 5-17 in families in poverty as a percent of population ages 5-17. Salmon markers: 40-50%. Red markers: 50% or more.

– view developed with CVGIS software and related GIS project.

School District Demographic Trends Interactive Table
Use the interactive table to view, rank, compare demographic characteristics of districts of interest.

More About K-12 Education & Children’s Demographics
See the related section on School District Demographic Trends 2010-2016:
http://proximityone.com/sdtrends.htm.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on L

Examining America’s 10 Largest Urban Areas

.. why it matters .. among other reasons, these 10 areas have 24% of the total U.S. population. Three have increased by more than 20% in the past 5 years.

More than 80-percent of America’s population is urban, but far more than 80-percent of America’s geography is rural. Census 2010 shows that America’s urban population increased by 12.1 percent from 2000 to 2010, compared to the national overall growth rate of 9.7 percent. Urban areas now account for 80.7 percent of the U.S. population, compared to 79.0 percent in 2000.

America’s 10 Largest Urbanized Areas
The following table shows the largest 10 Urbanized Areas (UAs) based on the American Community Survey 2011 and 2016 1-year estimates (ACS2016) and change over the period. UAs are sorted in descending order based on the 2016 population estimate. Note that Atlanta, Dallas and Houston moved up in rank.

Geodemographic relationships vary widely between the urbanized areas (UAs). Some, such as Miami, comprise most or all of the urban area within the corresponding metropolitan statistical area. Others, such as Philadelphia, are nested within a mix of adjacent urban areas interspersed with rural areas. Among other things, these different geodemographic structures reflect how planning, needs assessment and market development vary widely from associated metro-to-metro. These data show the importance and need to consider the urban/rural population distribution even in the largest metros.

Visual Analysis — Dallas Urbanized Area
The urbanized area (UA) of the corresponding metropolitan statistical area (MSA) generally occupies less than half of the MSA.
See the Dallas-Fort Worth-Arlington, TX MSA Situation and Outlook Report

… View developed using CV XE GIS.

Map Views for Each of the Largest 10 Urbanized Areas
Maps for each of the 10 largest UAs are shown at
http://proximityone.com/urbanareas_2016.htm.

Each graphic shows the designated urbanized area in a darker salmon color fill pattern, associated metropolitan statistical area with bold brown boundary, and other urban areas with a lighter shade of salmon fill color, counties black boundaries and yellow labels. The ACS 2016 UA population is shown as a white label under the UA name. The ACS 2016 estimates are the most recent data available and will update with 2017 estimates in late 2018.

More About Analyzing Urban/Rural Patterns and Characteristics
See the related section on America’s urban/rural population and geography:
http://proximityone.com/urbanpopulation.htm.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on L

Creating Custom Demographic Datasets with API Tools

.. develop national scale spreadsheet files with virtually no learning time .. easy-to-use API operations to create national scope demographic-economic datasets based on American Community Survey 2016 1-year estimates .. custom subject matter selections. See more detail in related web sections ACS2016 and ACS2016_API.

Benefits and utility … how to acquire a spreadsheet showing the population of all cities with population estimates based on the ACS 2016 1-year data? … or, housing units, median household income, median housing value, etc.? Variations of this need frequently arise — what is the list of largest California counties sorted on total population: What are the 25 metros having the highest median household income? Which 10 congressional districts have the highest poverty incidence? Which urban areas have the highest educational attainment?

Use simple API calls described below to get answers to these types of questions — and more.  Create files that can be used for recurring applications. An example …

Urban Areas with 2016 Population 65,000+ Population
… results from using the API downloaded data … the following graphic shows urban areas with 65,000 or more 2016 population; zoom-in to Texas. The full national scope GIS project is available as described below; examine U.S. or any region. The file used to develop this view was created using the results of the API call reviewed below (requires integration of those data into the urban areas shapefile). Click graphic for larger view; expand browser window. Larger view shows urban areas labeled with name and mini profile for Dallas UA showing all subject matter items downloaded (via API) as described below.

… View developed using CV XE GIS.
… See more about Urban Population & Urban Areas.

Access ACS 2016 1-Year Data Using API Tools
Here are the API links … use these API calls to access/download selected items for selected geographies. See more about using API tools. Click a link and receive a return page with CSV-like structured data. See usage notes below. As these are ACS 2016 1 year estimates; geographies are only available for areas 65,000+ population.
Click a link:
• All U.S. cities/places
• All U.S. counties
• All U.S. CBSAs
• All U.S. Urban Areas
• All 115th Congressional Districts
• All U.S. states
• U.S. only

The following data retrieval operations are by state. These are examples using Arizona (FIPS state code 04).
• All [within state] Elementary School Districts
• All [within state] Secondary School Districts
• All [within state] Unified School Districts

API Call Returned Data Usage Notes
Clicking the All U.S. cities/places link above generates a new page with content very much like a CSV file. Try it .. click an above link.

See the related ACS2016_API web section for more details.

Items Retrieved in the API Calls
The sample header record above shows the subject matter item listed at the left in the following set of items. Modify API call and use other subject matter items. See full array of subject matter – xlsx file.
.. B01003_001E – Total population
Age
.. B01001_011E — Male: 25 to 29 years (illustrating age cohort access)
.. B01001_035E — Female: 25 to 29 years (illustrating age cohort access)
Race/Origin
.. B02001_002E – White alone
.. B02001_003E – Black or African American alone
.. B02001_004E – American Indian and Alaska Native alone
.. B02001_005E – Asian alone
.. B02001_006E – Native Hawaiian and Other Pacific Islander alone
.. B02001_007E – Some other race alone
.. B02001_008E – Two or more races
.. B03001_003E – Hispanic (of any race)
Income
.. B19013_001E – Median household income ($)
.. B19113_001E – Median family income ($)
Housing & Households
.. B25001_001E – Total housing units
.. B25002_002E – Occupied housing units (households)
.. B19001_017E — Households with household income $200,000 or more
.. B25003_002E — Owner Occupied housing units
.. B25075_025E — Housing units value $1,000,000 to $1,499,999
.. B25075_026E — Housing units with value $1,500,000 to $1,999,999
.. B25075_027E — Housing units with value $2,000,000 or more
.. B25002_003E – Vacant housing units
.. B25077_001E – Median housing value ($) – owner occupied units
.. B25064_001E – Median gross rent ($) – renter occupied units

The rightmost fields/columns in the rows/records contain the area name and geographic codes.

Using API Tools for Data Analytics
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on L

State of the States: Demographic Economic Update

.. tools and resources to examine the demographic-economic state of the states .. in 2016, the U.S. median housing value was $205,000 while states ranged from $113,900 (Mississippi) to $592,000 (Hawaii). See item/column H089 in the interactive table to view, rank, compare, analyze state based on this measure … in context of related housing characteristics. These data uniquely provide insights into many of the most important housing characteristics.

Use new tools, data and methods to access, integrate and analyze demographic-economic conditions for the U.S. and states. These data will update in September 2018.

Approximately 600 subject matter items from the American Community Survey ACS 2016 database (released September 2017) are included in these four pages/tables:
• General Demographics
• Social Characteristics
• Economic Characteristics
• Housing Characteristics

GIS, Data Integration & Visual Data Analysis
Use data extracted from these tables in a ready-to-use GIS project. These ACS sourced data (from the four tables listed above) have been integrated with population estimates trend data, components of change and personal income quarterly trend data. See details in this section.

Examining Characteristics & Trends
Below are four thematic pattern maps extracted from the main sections listed above. Click a map graphic for a larger view. Use the GIS project to create variations of these views.

Patterns of Median Age by State
Yellow label shows the state USPS abbreviation; white label shows median age. Legend shows color patterns associated with percent population change 2010-2016.

– View developed using CV XE GIS software and associated GIS project.
– See item/column D017 in the interactive table to view, rank, compare, analyze state based on median age.

Patterns of Educational Attainment by State
Yellow label shows the state USPS abbreviation; white label shows % college graduates. Legend shows color patterns associated with percent population change 2010-2016.

– View developed using CV XE GIS software and associated GIS project.
– See item/column S067 in the interactive table to view, rank, compare, analyze state based on percent college graduates.

Patterns of Economic Prosperity by State
Yellow label shows the state USPS abbreviation; white label shows $MHI. Legend shows color patterns associated with percent population change 2010-2016.

– View developed using CV XE GIS software and associated GIS project.
– See item/column E062 in the interactive table to view, rank, compare, analyze state based on median household income.

Patterns of Median Housing Value by State
Yellow label shows the state USPS abbreviation; white label shows $MHV. Legend shows color patterns associated with percent population change 2010-2016.

– View developed using CV XE GIS software and associated GIS project.
– See item/column H089 in the interactive table to view, rank, compare, analyze state based on median housing value.

Examining Characteristics & Trends; Using Data Analytics
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.