Category Archives: Shapefile

Analyzing Patterns of COVID-19: Part 1

.. as COVID-19 impacts our demographics, economy and way of life, we look for answers about where we are and what lies ahead.  Here we review data on COVID-19 incidence and tools to analyze those data. In the coming days, weeks, we plan to augment these tools and data. See more below.  See related Web section for more detail.

Use new resources to examine/analyze patterns of COVID-19 incidence in context of related demographic-economic characteristics. Resources include the narrative/interpretative portion, interactive table and GIS tools and project/files. Data and tools are updated daily. There is no fee to use any of these resources.

COVID-19 Incidence by County in the Atlanta Metro Area
The following graphic shows patterns of COVID-19 incidence (number of cases per 1,000 population) by county. See color patterns in the inset legend. This view shows counties labeled with name and number of confirmed COVID-19 cases. Use the GIS project described below to create variations of this view and develop similar views for any metro.

.. view developed with ProximityOne CV XE GIS and related GIS project.

The GIS resources and interactive table below makes use of the COVID-19 confirmed cases data updated daily by the New York Times. See more about the New York Times U.S. tracking page.

COVID-19 Incidence — U.S. by County
Similar to the above view, the following graphic shows patterns of COVID-19 incidence (number of cases per 1,000 population) by county for the U.S. See color patterns in the inset legend. This view shows counties labeled with name and number of confirmed COVID-19 cases. Use the GIS project described below to create variations of this view and develop similar views for any metro. Click graphic for larger, more detailed view. Expand browser window for best quality view.

.. view developed with ProximityOne CV XE GIS and related GIS project.

Using GIS Tools & Resources
Use the Geographic Information System (GIS) CV XE GIS software and GIS project to view maps and geospatially analyze patterns COVID-19 cases in context of related demographic-economic data. The GIS project automatically opens with the following view:

.. see details about using the mapping/GIS resources.
.. create map views for your areas of interest.

COVID-19 Confirmed Cases by County Interactive Table
Use the interactive table to view, rank, query compare patterns of COVID-19 cases. See related demographic-economic interactive tables.

The following static graphic illustrates use of the table to view daily patterns of COVID-19 cases in Cobb County, GA.

Use the interactive table to examine counties of interest.

Situation & Outlook Web Sessions
Join me in a Situation & Outlook Web Session where we discuss topics relating to measuring and interpreting the where, what, when, how and how much demographic-economic change is occurring and it’s impact.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Census 2020 Residential Address Counts by Block

.. using Census 2020 residential address count data to examine change since 2010 .. the Census Bureau has released preliminary Census 2020 residential address counts by Census 2010 census block. These data, count of residential addresses and group quarters addresses, reflect updates as of October 2019 and do not represent final Census 2020 counts. The data will continue to be updated to support Census 2020. See related Web section with more detail and updates.

Importance and Use
These data are of immediate value in determining and analyzing how the number of housing units have changed, 2010 to 2019. Since the data are at the census block level, they may be aggregated to any other Census-defined summary level/type of geographic area such as block group, tract, ZIP code, city, county, school district, etc. These data are also important as they give us a “year in advance look” at how small area demographics are changing since 2010. Before this, the most recent census block data were from Census 2010. A lot has happened in many areas. These data provide insights into that change. The Census 2020 block level data will be released in early 2021 for Census 2020 census block geography. So, another important feature of these data is that they are summarized for Census 2010 census block boundaries. Census 2010 and 2020 block boundaries may differ, particularly in areas experiencing larger demographic growth/change. An important limitation is that they are counts, subject to change as the Census data are collected/tabulated.

Comparing Census 2010 Housing Units with Census 2020 Address Counts
The following graphic shows patterns of Census 2010 housing counts with the Census 2020 (late 2019 vintage) residential address counts by census block. This view is focused on census tract 3608100700 (tract 000700) in Queens County, NY (code shown near center of graphic). Individual blocks are labeled with block code (4 digits) with the Census 2010 housing units (yellow label) and Census 2020 residential address count (green label) shown below the block code. As an example, the block located at the pointer has block code 3006 (or full national scope unique block code 36-081-00700-3006) with a Census 2010 count 44 housing units and a Census 2020 (late 2019 count) of 232 residential addresses. Click graphic for larger view. Expand browser window to full screen for best quality view.

.. view created with ProximityOne CV XE GIS software and related GIS project.

More About Using these Data
We have summarized these data at the census tract level and are evaluating their use, in combination with other data, to develop current estimates and projections to 2025.

Data Analytics Web Sessions
Join me in a Demographics Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Neighborhood Median Family Income: Measuring Economic Well-Being

.. Median Family Income ($MFI) and Median Household Income ($MHI) are two measures of economic well-being. Based on the 2018 American Community Survey 1-year (ACS) data, the U.S. 2018 $MFI was estimated to be $76,401 while the $MHI was estimated to be $61,937 .. both in 2018/current dollars. Create insights into patterns of well-being by neighborhood using geospatial analysis. $MFI patterns are illustrated by the following thematic pattern map.

Patterns of Economic Prosperity by Neighborhood/Census Tract
The following view shows patterns of $MFI by census tract for the inner beltway area of Houston/Harris County, TX. Income interval color patterns are shown in the inset legend. Tracts are labeled with $MFI. Click graphic for larger view. Expand browser window for best quality view. Larger view shows tracts labeled with tract code. It is easy to see how west Houston and east Houston areas differ.

– view developed with ProximityOne CV XE GIS software and related GIS project.
– these $MFI data are based on the 2018 ACS 5-year estimates.

This section focuses on $MFI but could just as well focus on $MHI and yet other related income measures. $MFI will almost always be greater that $MHI, generally by a large margin. See the U.S. 2018 $MFI and $MHI in context of related demographic-economic measure here. See more about the distinctions/definitions of families and and households below.

The ACS data are a unique source of income and related data at the neighborhood or sub-county level. View more about accessing and using the 2018 ACS 5-year estimates.

Family Definition
A family is a group of two people or more (one of whom is the householder) related by birth, marriage, or adoption and residing together; all such people (including related subfamily members) are considered as members of one family. The number of families is equal to the number of family households. However, the count of family members differs from the count of family household members because family household members include any non-relatives living in the household.

Related … an unmarried partner, also known as a domestic partner, is specifically defined as a person who shares a close personal relationship with the reference person. … Same-sex unmarried-partner families or households – reference person and unmarried partner are both male or female.

Household Definition
A household consists of all the people who occupy a housing unit. A house, an apartment or other group of rooms, or a single room, is regarded as a housing unit when it is occupied or intended for occupancy as separate living quarters; that is, when the occupants do not live with any other persons in the structure and there is direct access from the outside or through a common hall.

A household includes the related family members and all the unrelated people, if any, such as lodgers, foster children, wards, or employees who share the housing unit. A person living alone in a housing unit, or a group of unrelated people sharing a housing unit such as partners or roomers, is also counted as a household. The count of households excludes group quarters. There are two major categories of households, “family” and “nonfamily”.

Situation & Outlook Weekly Web Sessions
Join me in a Situation & Outlook web session to discuss more details about demographic-economic estimates and projections.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Examining How Metro GDP is Changing

.. which metros had the largest 2018 real GDP? How did they change since 2010? How to they compare on a per capita basis? What about metros of interest to you? Read on …

As an investor, business or stakeholder in a metro, it is important to know how and where the economy is changing … and how one or selected metros relate to the U.S. and other metros. Is metro X changing in a different direction than metro Y? By how much, why and is there a pattern? What does the healthcare sector, for example, contribute to a metro’s gross domestic product (GDP)? How does it compare to peer metros? How is the healthcare industry trending? Metro GDP data can provide insights and answers to these important questions.  See related main Web page.

In 2018, per capita real gross domestic product (GDP) in MSAs ranged from $19,299 (The Villages, FL MSA) to $196,277 (Midland, TX MSA). The percent change in per capita real GDP by metro, 2010 to 2018 ranged from -24% (New Orleans-Metairie, LA MSA) to 126.6% (Midland, TX MSA). Use the interactive table to view these and related data.

Change in Per Capita Real GDP by Metro; 2010-2018
The following graphic shows patterns of change in per capita real GDP by metro (MSA) from 2010 to 2018. Label shows 2018 rank of the metro among all 384 MSAs based on 2018 per capita real GDP. Click graphic for larger view. Expand browser to full window for best quality view.

— view created using ProximityOne CV XE GIS and associated GIS project

Top 25 Metros (MSAs) based on 2018 per capita real GDP
The following graphic shows the top 25 metros (MSAs) based on 2018 per capita real GDP labeled with rank. Click graphic for larger view. Expand browser to full window for best quality view.

— view created using ProximityOne CV XE GIS and associated GIS project
 
Using the Interactive Table – 10 largest metros based on 2018 real GDP
— insights into comparative analytics and trends.
— view, rank, compare districts based on your criteria.
— example, which metros have the largest 2018 real GDP?
Use the interactive table to examine GDP characteristics and trends of metros. The following view illustrates use of the table. This view shows use a query to show the ten metros ranked on 2018 real GDP. Click graphic for larger view.

Try using the interactive table to examine metros of interest.

Demographic-Economic Analytics Web Sessions
Join me in a Demographics Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

116th Congressional Districts & Patterns of Economic Prosperity

.. Congressional District Analysis and Insights .. tools to examine patterns of median household income .. median household income is one measure of economic prosperity. This section reviews patterns of median household income (MHI) by 116th Congressional Districts based on the 2018 American Community Survey 1-year estimates (ACS 2018). View, rank, compare the MHI by congressional district, among related demographic attributes using the interactive table on the main Congressional Districts page.

116th Congressional District Analysis & Insights
.. patterns of household income & economic prosperity:
Based on the ACS 2018 median household income (MHI):
• the MHI among all districts was $60,291
• the U.S. overall MHI was $61,937
As of November 2019:
• the 19 districts with highest MHI have Democrat incumbents
• the 10 districts with the highest Gini Index have Democrat incumbents
• there are 69 Republican incumbent districts above the all districts MHI
• there are 149 Democrat incumbent districts above the all districts MHI
• the MHI of the 236 Democrat incumbent districts is $66,829
• the MHI of the 199 Republican incumbent districts is $56,505
Median household income is only one measure of economic prosperity.
See more at http://proximityone.com/cd.htm.

Patterns of Economic Prosperity 116th Congressional District
The following graphic shows patterns of 2018 median household income by 116th Congressional District. Use GIS tools/data to generate similar views for any state and/or drill-down. Click graphic for larger view with more detail. Expand browser window for best quality view.

– view developed using ProximityOne CV XE GIS and related GIS project.

Using the Interactive Table
— view, rank, compare districts based on your criteria.
— example,which districts have the highest median household income?
Use the interactive table to examine incumbency and and demographic characteristics of the 116th Congressional Districts (CDs). The following view illustrates use of the table. This view shows use a query to show the ten CDs having highest 2018 median household income.

Try using the interactive table to existing districts and categories of interest.

Congressional District/State Legislative District Group
Join in .. be a part of the Congressional Districts/State Legislative District (CDSLD) group. Access analytical tools and data. Learn about CDSLD analytics, patterns and trends. Share insights with like-minded stakeholders.

Demographic-Economic Analytics Web Sessions
Join me in a Demographics Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Employment by Occupation by Census Tract; 5-Year Trends

.. data and tools to examine patterns of employment by occupation by census tract and 5-year change .. the U.S. civilian employed population increased from 142.9 million in 2012 to 155.1 million in 2017, an increase of 12.1 million (8.5%) based on the American Community Survey (ACS) 1-year estimates. See this table to see how the employed population were distributed by occupation in 2012, 2017 and the 5-year change. How did your neighborhoods or market/service areas of interest change over the past 5 years? How will occupational employment patterns by tract/neighborhood change between now and 2023?

Patterns of Percent Employed in Health Occupations by Census Tract
The following graphic shows patterns of the employed population in health occupations as a percent of total civilian employed population ages 16 and over in the Minneapolis-St. Paul metro. This view uses the occupational category MBSA40 Healthcare practitioners and technical listed in scroll section below. Tracts with blue or green pattern exceed the national average as shown in national table. Click graphic for larger view, more detail (shows schools layer) and legend color/data intervals. This map illustrates the geographic level of detail available using census tract demographics and the relative ease to gain insights using geospatial data analytics tools. View related graphic showing tract with the largest employment in the “Healthcare practitioners and technical” occupational group among all tracts.

– View developed using CV XE GIS and related GIS project.

Drill-down to Census Tract Level
Examining patterns of employment by occupation, for the same scope of subject matter, at the sub-county level can provide more insights. What is the size of the employment for a selected occupation in a neighborhood or market/service area of interest? How has the size of an occupational group by census tract changed over the past five years? How do these patterns rank/compare by tract in a particular state, metro or county? Data on employment by occupational category from the Federal statistical system on a U.S. national scale for counties, cities and census tracts are only available from the American Community Survey (ACS).

Use tools, resources and methods described here to access, integrate and analyze employment by occupation for the U.S. by census tract. Use the interactive table to view, query, rank, compare census tract occupational characteristics, patterns and trends. Data are based on the American Community Survey (ACS) 2017 5-year estimates.

Related sections with census tract interactive tables:
– General Demographics .. Social .. Economic .. Housing 

Current Estimates & Projections
ACS tract/small area estimates lag by four years or more between the current year and reference year. ACS does not produce current year annual estimates but estimates based on a 5-year period. The 2017 ACS estimates are centric to 2015. Use the ProximityOne annual tract estimates and projections 2010 through 2023 for current year (e.g., characteristics as of 2018) estimates and anticipated change 5 years ahead.

Using the Interactive Table
An example of using the interactive table to view, query, rank, compare census tract occupational characteristics, patterns and trends is shown by the graphic presented below. The table shows 6 columns of employment data for all tracts in Harris County, TX. The table is ranked on the ACS 2017 health occupations employment (MBSA40) column. Tract 48-201-312600 had largest ACS 2017 health employment of 1,078 among all tracts in the county. Compare to 2012 patterns. Use settings below table to develop a similar view your geography and occupations of interest.

Occupational Categories
The interactive table includes occupational categories listed below.
Total population
Total Civilian employed population 16 years and over
MBSA00 . Management, business, science, and arts
MBSA10 . . Management, business, and financial
MBSA11 . . . Management
MNSA12 . . . Business and financial operations
MBSA20 . . Computer, engineering, and science
MBSA21 . . . Computer and mathematical
MBSA22 . . . Architecture and engineering
MBSA23 . . . Life, physical, and social science
MBSA30 .. Education, legal, community service, arts, and media
MBSA31 … Community and social service
MBSA32 … Legal
MBSA34 … Education, training, and library
MBSA35 … Arts, design, entertainment, sports, and media
MBSA40 .. Healthcare practitioners and technical
MBSA41 … Health diagnosing & treating practitioners & other tech
MBSA42 … Health technologists and technicians
SVC00 . Service
SVC10 . . Healthcare support
SVC20 . . Protective service
SVC21 . . . Fire fighting/prevention & other protective services
SVC22 . . . Law enforcement workers including supervisors
SVC30 . . Food preparation and serving related
SVC40 . . Building and grounds cleaning and maintenance
SVC50 . . Personal care and service
SOF00 . Sales and office
SOF10 . . Sales and related
SOF20 . . Office and administrative support
NRC00 . Natural resources, construction, and maintenance
NRC10 . . Farming, fishing, and forestry
NRC20 . . Construction and extraction
NRC30 . . Installation, maintenance, and repair
PTM00 . Production, transportation, and material moving
PTM10 . . Transportation
PTM20 . . Material moving

Data Analytics Web Sessions
See these applications live/demoed. Run the applications on your own computer.
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Census 2020 P.L. 94-171 Redistricting Data Updates

.. we are just two years away from the first census block level data from Census 2020.  The initial block level data will be the P.L. 94-171 redistricting data.  But before that, the initial Census 2020 TIGER/Line shapefiles/GIS files, the geography, will become available in November 2020, maybe earlier.  Stakeholders will be able to see how block and tract codes and geography have changed in many areas since 2010.  The prototype P.L. 94-171 data (see final file layout and subject matter items) are expected in the last week of March 2019 and will cover the Providence County, RI area. This post shows illustrative views and related details about the area. The Census 2020 P.L. 94-171 program and plans are reviewed in this Federal Register notice.

The applications/views shown below have been developed using the ProximityOne CV XE GIS software and related GIS project.

Census 2020 Data Access and Use Program
ProximityOne operates a comprehensive Census 2020 Data Access and Use Program providing tools to integrate and analyze these data with other data for redistricting, planning, evaluation, management, general analysis and policy-related applications. Contact us for more information; mention Census 2020 Data Access and Use Program in text section.

Providence, RI Census 2020 P.L. 94-171 Prototype
The Census 2020 P.L. 94-171 prototype covers Providence County, RI, part of the Providence-Warwick, RI-MA MSA (39300) — see Situation& Outlook report. Providence County is shown with cross-hatch pattern in the following graphic.

The next graphic shows a zoom-in to the county with cities/places shown with green fill pattern.

The next graphic shows patterns of economic prosperity for the county based on ACS 2017 median household income by census tract — blue, higher and red, lower.

The next graphic shows Census 2010 blocks for the county. Demographics described in the P.L. 94-171 file described about will be provided at the census block level.

Census block boundaries are primarily defined by roads. Providence County roads are shown in the next view.

The next view shows a zoom-in to the downtown Providence city area. Census blocks are shown with red boundaries and labeled with the 15-character U.S. national scope unique census block code. The pointer is located in census block 440070012001001, or 44-007-001200-1001, expressed as SS-CCC_TTTTTT-BBBB. Access these Census 2010 data (an example) using the Census FactFinder tool via this link. This is the “P1 RACE” table. The Census 2010 population of the block was 598. This census block is one of 13,597 Census 2010 census blocks comprising Providence County.

Rhode Island 116th Congressional Districts 01 and 02 (labeled) split Providence city (cross-hatch pattern) as shown in the graphic below. Pointer shows CD boundary.

Similar to above, the graphic below shows census blocks in context of Providence city (bold green boundary) and CDs 01 and 02.

Next Steps
This section provides a geographic orientation the Census 2020 P.L. 94-171 prototype area. A subsequent post (March 2019) will extend on this post with Census 2020 P.L. 94-171 data and related details. Use the downloadable project and software to examine geodemographics and redistricting operations.

Data Analytics Web Sessions
See these applications live/demoed. Run the applications on your own computer.
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.