Tag Archives: ACS

Creating Custom Demographic Datasets with API Tools

.. develop national scale spreadsheet files with virtually no learning time .. easy-to-use API operations to create national scope demographic-economic datasets based on American Community Survey 2016 1-year estimates .. custom subject matter selections. See more detail in related web sections ACS2016 and ACS2016_API.

Benefits and utility … how to acquire a spreadsheet showing the population of all cities with population estimates based on the ACS 2016 1-year data? … or, housing units, median household income, median housing value, etc.? Variations of this need frequently arise — what is the list of largest California counties sorted on total population: What are the 25 metros having the highest median household income? Which 10 congressional districts have the highest poverty incidence? Which urban areas have the highest educational attainment?

Use simple API calls described below to get answers to these types of questions — and more.  Create files that can be used for recurring applications. An example …

Urban Areas with 2016 Population 65,000+ Population
… results from using the API downloaded data … the following graphic shows urban areas with 65,000 or more 2016 population; zoom-in to Texas. The full national scope GIS project is available as described below; examine U.S. or any region. The file used to develop this view was created using the results of the API call reviewed below (requires integration of those data into the urban areas shapefile). Click graphic for larger view; expand browser window. Larger view shows urban areas labeled with name and mini profile for Dallas UA showing all subject matter items downloaded (via API) as described below.

… View developed using CV XE GIS.
… See more about Urban Population & Urban Areas.

Access ACS 2016 1-Year Data Using API Tools
Here are the API links … use these API calls to access/download selected items for selected geographies. See more about using API tools. Click a link and receive a return page with CSV-like structured data. See usage notes below. As these are ACS 2016 1 year estimates; geographies are only available for areas 65,000+ population.
Click a link:
• All U.S. cities/places
• All U.S. counties
• All U.S. CBSAs
• All U.S. Urban Areas
• All 115th Congressional Districts
• All U.S. states
• U.S. only

The following data retrieval operations are by state. These are examples using Arizona (FIPS state code 04).
• All [within state] Elementary School Districts
• All [within state] Secondary School Districts
• All [within state] Unified School Districts

API Call Returned Data Usage Notes
Clicking the All U.S. cities/places link above generates a new page with content very much like a CSV file. Try it .. click an above link.

See the related ACS2016_API web section for more details.

Items Retrieved in the API Calls
The sample header record above shows the subject matter item listed at the left in the following set of items. Modify API call and use other subject matter items. See full array of subject matter – xlsx file.
.. B01003_001E – Total population
Age
.. B01001_011E — Male: 25 to 29 years (illustrating age cohort access)
.. B01001_035E — Female: 25 to 29 years (illustrating age cohort access)
Race/Origin
.. B02001_002E – White alone
.. B02001_003E – Black or African American alone
.. B02001_004E – American Indian and Alaska Native alone
.. B02001_005E – Asian alone
.. B02001_006E – Native Hawaiian and Other Pacific Islander alone
.. B02001_007E – Some other race alone
.. B02001_008E – Two or more races
.. B03001_003E – Hispanic (of any race)
Income
.. B19013_001E – Median household income ($)
.. B19113_001E – Median family income ($)
Housing & Households
.. B25001_001E – Total housing units
.. B25002_002E – Occupied housing units (households)
.. B19001_017E — Households with household income $200,000 or more
.. B25003_002E — Owner Occupied housing units
.. B25075_025E — Housing units value $1,000,000 to $1,499,999
.. B25075_026E — Housing units with value $1,500,000 to $1,999,999
.. B25075_027E — Housing units with value $2,000,000 or more
.. B25002_003E – Vacant housing units
.. B25077_001E – Median housing value ($) – owner occupied units
.. B25064_001E – Median gross rent ($) – renter occupied units

The rightmost fields/columns in the rows/records contain the area name and geographic codes.

Using API Tools for Data Analytics
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on L

State of the States: Demographic Economic Update

.. tools and resources to examine the demographic-economic state of the states .. in 2016, the U.S. median housing value was $205,000 while states ranged from $113,900 (Mississippi) to $592,000 (Hawaii). See item/column H089 in the interactive table to view, rank, compare, analyze state based on this measure … in context of related housing characteristics. These data uniquely provide insights into many of the most important housing characteristics.

Use new tools, data and methods to access, integrate and analyze demographic-economic conditions for the U.S. and states. These data will update in September 2018.

Approximately 600 subject matter items from the American Community Survey ACS 2016 database (released September 2017) are included in these four pages/tables:
• General Demographics
• Social Characteristics
• Economic Characteristics
• Housing Characteristics

GIS, Data Integration & Visual Data Analysis
Use data extracted from these tables in a ready-to-use GIS project. These ACS sourced data (from the four tables listed above) have been integrated with population estimates trend data, components of change and personal income quarterly trend data. See details in this section.

Examining Characteristics & Trends
Below are four thematic pattern maps extracted from the main sections listed above. Click a map graphic for a larger view. Use the GIS project to create variations of these views.

Patterns of Median Age by State
Yellow label shows the state USPS abbreviation; white label shows median age. Legend shows color patterns associated with percent population change 2010-2016.

– View developed using CV XE GIS software and associated GIS project.
– See item/column D017 in the interactive table to view, rank, compare, analyze state based on median age.

Patterns of Educational Attainment by State
Yellow label shows the state USPS abbreviation; white label shows % college graduates. Legend shows color patterns associated with percent population change 2010-2016.

– View developed using CV XE GIS software and associated GIS project.
– See item/column S067 in the interactive table to view, rank, compare, analyze state based on percent college graduates.

Patterns of Economic Prosperity by State
Yellow label shows the state USPS abbreviation; white label shows $MHI. Legend shows color patterns associated with percent population change 2010-2016.

– View developed using CV XE GIS software and associated GIS project.
– See item/column E062 in the interactive table to view, rank, compare, analyze state based on median household income.

Patterns of Median Housing Value by State
Yellow label shows the state USPS abbreviation; white label shows $MHV. Legend shows color patterns associated with percent population change 2010-2016.

– View developed using CV XE GIS software and associated GIS project.
– See item/column H089 in the interactive table to view, rank, compare, analyze state based on median housing value.

Examining Characteristics & Trends; Using Data Analytics
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Analyzing Block Group Demographics

.. tools & data to analyze sub-census tract households, education, income, housing, more … Block Groups, subdivisions of census tracts, are the smallest geographic areas for which “richer demographics” are developed by the Census Bureau. Block group demographic-economic estimates, based on Census 2010 geography, are annually updated beginning with American Community Survey (ACS) 2010. The latest ACS estimates for these 217,740 areas covering U.S. wall-to-wall are from ACS 2015. The ACS 2016 update will be released in December 2017.  See the related Web section for more detail about accessing and using block group geography and demographic-economic data.

Patterns of Economic Prosperity by Block Group
The following graphic shows patterns of median household income by block group in the Houston, TX area. Markers show block groups with 10 or more housing units having value of $2 million or more. Markers are labeled with the number of housing units having value of $2 million or more in that block group. Click graphic for larger view, more detail and legend color/data intervals. This map illustrates the geographic level of detail available using block group demographics and the relative ease to gain insights using geospatial data analytics tools.

– View developed using CV XE GIS and related GIS project.

Block Group Demographic-Economic Data & Shapefiles
… selection of key demographic-economic attributes; annual update
… subject matter categories include:
  • Total population>
  • Population by gender iterated by age
  • Population by race/origin
  • Households by type of household
  • Educational attainment by detailed category
  • Household Income by detailed category
  • Housing units by owner/renter occupancy
  • Housing units by units in structure
  • Housing units by detailed value intervals

See the related Web section for a detailed list of items.

Use these Data on Your Computer
Use the above U.S. national scope dataset with your own software or in ready-to-use GIS projects with the CV XE GIS software.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

County 5-Year Trends: Income & Income Inequality

.. tools and data to examine how the U.S. by county household income and income inequality are changing … how is household income changing in counties of interest? What are the trends; what is causing the change? What are the characteristics of income inequality and how is it changing? How might this change impact your living environment and business?

This section provides access to tools and data to examine U.S. by county measures of household income and income inequality between two 5-year periods (2006-10 and 2011-2015). These data can provide insights into how household income and income inequality are changing for one county, a group of counties and the U.S. overall. Use the interactive table to view median household income and measures income inequality for all counties. See more detail about these topics here. Measures of income inequality can be estimates/examined using the Gini Index.

The Gini Index & Measuring Income Inequality
The Gini Index is a dimensionless statistic that can be used as a measure of income inequality. The Gini index varies from 0 to 1, with a 0 indicating perfect equality, where there is a proportional distribution of income. A Gini index of 1 indicates perfect inequality, where one household has all the income and all others have no income.

At the national level, the 2015 Gini index for U.S. was 0.482 (based on 2015 ACS 1-year estimates) was significantly higher than in the 2014 ACS Index of 0.480 (based on 2014 ACS 1-year estimates). This increase suggests that income inequality increased across the country.

Examining Household Income & Income Inequality Patterns & Change
The following two graphics show patterns of the GIni Index by county. The first view is based on the American Community Survey (ACS) 2010 5-year estimates and the second is based on the ACS 2015 5-year estimates. The ACS 2010 estimates are based on survey respondents during the period 2006 through 2010. The ACS 2015 estimates are based on survey respondents during the period 2011 through 2015. One view compared with the other show how patterns of income inequality has changed at the county/regional level between these two 5-year periods.

Following these Income Inequality views are two corresponding views of median household income; using data from ACS 2010 and ACS 2015. Use CV XE GIS software with the GIS project to create and examine alternative views.

Patterns of Income Inequality by County; ACS 2010
The following graphic shows the patterns of the Gini Index by county based on the American Community Survey 2010 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Income Inequality by County; ACS 2015
The following graphic shows the patterns of the Gini Index by county based on the American Community Survey 2015 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Economic Prosperity by County; ACS 2010
The following graphic shows the patterns of median household income ($MHI) by county based on the American Community Survey 2010 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Economic Prosperity by County; ACS 2015
The following graphic shows the patterns of median household income ($MHI) by county based on the American Community Survey 2015 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Tools to Analyze County Demographic-Economic Characteristics

.. demographic-economic characteristics of counties are essential for business development, market analysis, planning, economic development, program management and general awareness of patterns and trends. This section provides access to data and tools to examine these data for all counties in the U.S. This annual update includes geographic area characteristics based on ACS 2015 data.  The tools/data are organized into four related sections summarized below.

1. General Demographics
View interactive table at http://proximityone.com/us155dp1.htm
Patterns of School Age Population by County
Use GIS tools to visually examine county general demographics as illustrated below. The following view shows patterns of percent population ages 5 to 17 years of age by county — item D001-D004-D018 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

2. Social Characteristics
View interactive table at http://proximityone.com/us155dp2.htm 
Patterns of Educational Attainment by County
– percent college graduate
Use GIS tools to visually examine county social characteristics as illustrated below. The following view shows patterns of percent college graduate by county — item S067 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

3. Economic Characteristics
View interactive table at http://proximityone.com/us155dp3.htm 
Patterns of Median Household Income by County
Use GIS tools to visually examine county economic characteristics as illustrated below. The following view shows patterns median household income by county — item E062 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

4. Housing Characteristics
View interactive table at http://proximityone.com/us155dp4.htm 
Patterns of Median Housing Value by County
Use GIS tools to visually examine county housing characteristics as illustrated below. The following view shows patterns median housing value by county — item E062 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

America’s Cities: Demographic-Economic Characteristics Annual Update

.. tools and data to interactively examine demographic-economic characteristics of America’s 29,321 cities/places .. understanding demographic-economic characteristics of cities and places is essential for business development, market analysis, planning, economic development, program management and general awareness of patterns and trends. This section provides access to data and tools to examine characteristics of all cities/places in the U.S. This annual update includes data for 29,321 cities/places based on ACS 2015 data.

Accessing the Data; Using Interactive Tables
Each of the four links below opens a new page providing access to U.S. by city/place interactive tables — by type of subject matter. Use tools and usage notes below table to select operations to perform queries, sort and select columns.
General Demographics
Social Characteristics
Economic Characteristics
Housing Characteristics

How the the Tables/Data Can be Used
The following table shows data derived from the Economic Characteristics table. The top 10 cities/places having the highest median household income ($MHI) are shown. The table also shows population, median family income ($MFI) and per capita income ($PCI). The $250,000 value is a cap; the actual value is $250,000 or higher. Use the interactive tables to create similar views for states of interest. Use the button below the table to select/view cities within a selected metro. Compare attributes of cities of interest to a peer group based on population size.

Visual Analysis of City/Place Population Patterns
Use GIS resources to visually examine city/place demographic-economic patterns. The following view shows patterns of population percent change by city in the Charlotte, NC-SC metro area.

… view developed using the CV XE GIS software.
… click map for larger view and details.

Related Data
Cities/Places Main Section
Citie Population Estimates & Trends, 2010-15

More About Using These Data
Using ACS 1-year and 5-year data

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Accessing & Using ZIP Code Demographics

.. tip of the day .. a continuing weekly or more frequent tip on developing, integrating, accessing and using geographic, demographic, economic and statistical data. Join in .. tip of the day posts are added to the Data Analytics Blog on an irregular basis, normally weekly. Follow the blog to receive updates as they occur.

… February 2017 updates .. 5 ways to access/analyze the most recent estimates of median housing value and other subject matter by ZIP Code area .. updates on accessing/downloading/using American Community Survey (ACS1115) 5-year estimates. See more detail in related Web section.

Site analysis (Option 5 below)
– create site analysis profiles from a location/ZIP code.

Contents
Five data access and use options, listed in the links below, are reviewed. Each method illustrates how ZIP code demographic-economic data can be accessed/ analyzed/used in different contexts. The most basic data access/data download is illustrated in Option 3. The following links open new windows that take you to the related section with more detail.
Option 1 – View the data as a thematic pattern map.
Option 2 – View, compare, rank query data in interactive tables.
Option 3 – Access data using API Tools; create datasets.
.. Option 3a – Extended ZIP Code subject matter access.
.. Option 3b – ZIP code urban/rural data access.
.. Option 3c – Additional API ACS data access resources.
Option 4 – View $MHI in structured profile in context of related data.
Option 5 – Site analysis – view circular area profile from a location.

Related ZIP Code Data Access & Use sections
Interactive access to demographics based on an address
Summary of ZIP Code Data Resources & Tools
10 Reasons to use Census Tracts Versus ZIP Codes
Analyzing Census Tract Demographics by ZIP Code Area
ZIP Code to Census Tract Equivalence Table
ZIP Code Urban/Rural Geography & Demographics
Mapping ZIP Code Demograhics
Housing Price Index by 5-digit ZIP Code – time series; annual updates
Housing Price Index by 3-digit ZIP Code – time series; quarterly updates
ZIP Code Business Establishment, Employment & Earnings by industry
ZIP Code Retail Trade Establishment & Sales by industry
ZIP Code Equivalence Tables — ZIP Code to School District

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.