Monthly Archives: May 2017

Relating ZIP Codes to City/Places

.. relating ZIP codes to cities .. 214 ZIP code areas intersect with New York city — what are these ZIP codes, their population and how many are completely within the city? What part of a ZIP code area of interest intersects with what city? Conversely, what ZIP code areas intersect with a city of interest? This section provides data and tools that can be used to answer these types of questions and gain insights into geospatial relationships. See more detailed information in the related full Web section.

The 2010 ZIP Code Tabulation Area (ZCTA) to City/Place relationship data provide a means to equivalence ZCTAs with Census 2010 cities/places. ZCTAs are geographic areas defined as sets of Census 2010 census blocks closely resembling USPS ZIP codes (lines, not areas). ZCTA boundaries are fixed for the intercensal period 2010 through 2020. Census 2010 vintage city/place areas are likewise defined as sets of Census 2010 census blocks. The ZCTA-City/place relationship data are developed through the use of the intersecting census block geography and associated Census 2010 Summary File 1 demographic data.

ZCTA-Place Relationships
The following graphic shows relationships between two selected ZCTAs (red boundaries) and related cities/places (blue fill pattern) in the Pima/Cochise County, AZ area. Relationships between these geographies are reviewed in examples shown below.

– View developed using CV XE GIS and related GIS project.

Using the ZCTA-Place Relationship Data
Two examples illustrating how to use the ZCTA-place relationship data are provided below. The examples are interconnected to the GIS project used to develop the map views, interactive table and data file described in this section. Example 1 describes how to use the data for a ZIP code area entirely located within one city/place. Example 2 describes how to use the data for a ZIP code area located in more than one city/place and area not located in any city/place.

ZCTA to Place Relationships: Example 1
In this example, ZCTA 85711, highlighted in red in the graphic shown below, falls wholly within place 77000, outlined in bold black below. As a result, there is only one corresponding record for ZCTA 85711 in the relationship file. The 2010 Census population for this relationship record is 41,251 (POPPT) which is equal to the 2010 Census population for ZCTA 85711 (ZPOP). See more details about this example.

ZCTA to Place Relationships: Example 2
In this example, ZCTA 85630, highlighted below in red in the graphic shown below, contains two places: all of place 62280 and part of place 05770, both are outlined in black below. As a result, there are two corresponding relationship records in the relationship file. For the first relationship record, the total 2010 Census population for ZCTA is 2,819 (ZPOP). See more details about this example.

Using the Interactive Table
Use the full interactive table to examine U.S. national scope ZCTA-city/place relationships. The following graphic illustrates how ZIP code can be displayed/examined for one city — Tucson, AZ. Each row summarizes characteristics of a ZIP code in Tucson. The last row in the graphic shows characteristics of ZIP code 85711 — the same ZIP code reviewed in Example 1 above.

Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Making & Using Custom 115th Congressional District Maps

.. using GIS resources to create custom 115th Congressional District maps .. use the methods, data and tools described in this section to develop custom congressional district maps. View patterns of economic prosperity by neighborhood for one or all congressional districts. Flexibly associate a congressional district boundary with related geography and subject matter.  See related Web section for more details.

Join the Congressional District-State Legislative District (CDSLD) Group .. be a part of the community. .. click here to join .. there is no cost.

Coming up … mapping/analyzing school district finances in context of the 115th Congressional Districts (June 2017).

See the related section on Making/Using 113th Congressional District Maps.
.. view different congressional district vintages in same map.

115th Congressional Districts by Incumbent Party Affiliation
This view and related GIS project/data update when changes are made to the 115th Congressional Districts incumbents (last updated 5/10/17). Party affiliation shown in this view is also available in the related interactive table. Click graphic for larger view. Expand browser window for best quality view.

– View developed using CV XE GIS and related GIS project.
– see below in this section about using this GIS project.

Use the Geographic Information System (GIS) tools and data to view/show congressional district in context with roads, landmarks and other geography. Flexibly add labels. Create pattern views. Add your own data.

Patterns of Economic Prosperity by 115th Congressional District
The following graphic shows patterns of ACS 2015 median household income (MHI) by 115th Congressional District. Click graphic for larger view. Expand browser window for best quality view.

– View developed using CV XE GIS and related GIS project.
– use the GIS project and tools see below to create different views.

Examine Characteristics of any Congressional District
The following graphic shows patterns of ACS 2015 median household income (MHI) by census tract in context of 115th Congressional Districts in a region of North Carolina. CD 3712 (Charlotte area) is shown with bold boundary. It is easy to see which areas/tracts have different levels of economic prosperity.

– View developed using CV XE GIS and related GIS project.
– use the GIS project and tools see below to create different views; add other layers.

Creating congressional district maps is often specific to a particular analysis, zoom-view, labeling, combination of different geographies or other considerations. While there are no estimates of unemployment by congressional district, using GIS tools it is possible to view/geospatially analyze patterns of unemployment within congressional district by county, census tract, block group and other geography.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Life Expectancy Change by County, 1980-2014

.. data and tools to examine changing life expectancy by county. Use the interactive table to examine life expectancy characteristics and related demographics for counties and regions of interest. Use the related GIS project and datasets to examine life expectancy contextually with other geography & subject matter. See details below. These data and tools are part of the ProximityOne health data analytics resources.

Life expectancy is rising overall in the United States, but in some areas, death rates are going in the other direction. These geographic disparities are widening.

Life Expectancy Change by County, 1980-2014
The following graphic shows patterns of the change in life expectancy change from 1980 to 2014. Click graphic for larger view. Expand browser window for best quality view.

– View developed using CV XE GIS and related GIS project.
– see below in this section about using this GIS project.

Life expectancy is greatest in the high country of central Colorado, but in many pockets of the U.S., life expectancy is more than 20 years lower. These data are based on research and analysis by the University of Washington Institute for Health Metrics and Evaluation.

Examining life expectancy by county allows for tracking geographic disparities over time and assessing factors related to these disparities. This information is potentially useful for policymakers, clinicians, and researchers seeking to reduce disparities and increase longevity.

Life Expectancy Change by County, 1980-2014 — drill-down view
— South Central Region
The following graphic shows patterns of the change in life expectancy change from 1980 to 2014. Click graphic for larger view. Expand browser window for best quality view. The larger graphic shows counties labeled with change in life expectancy from 1980-2014.

– View developed using CV XE GIS and related GIS project.
– see below in this section about using this GIS project.

Additional Views — use the GIS project to create your own views
.. click link to view
Alaska
Hawaii
Minneapolis metro

Using the Interactive Table
Use the interactive table to view, rank, compare life expectancy characteristics. This graphic shows California counties ranked on life expectancy change 1980-2014 in descending order. Select states or metros of interest. Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.