Tag Archives: data analytics

Metro Population & Components of Change Trends 2010-2016

.. tools and data to examine how the U.S. by metro population is changing. Is the population moving away or into metros of interest? What are the trends; what is causing the change? What are the characteristics of the population moving in and out? How might this impact your living environment and business?

This section provides information on how and why the population is changing by metro from 2010 to 2016 in terms of components of change: births, deaths and migration. It provides a summary of tools, interactive table and GIS project, to analyze population change by metro using latest Census Bureau estimates through 2016. These data are used by ProximityOne to develop/update annual demographic-economic projections.  See related Web page to access full interactive table and more detail.

Patterns of Population Change by Metro, 2010-2016
The following graphic shows how metros (MSAs – Metropolitan Statisticsl Areas) changed from 2010 to 2016 based on percent population change. Click graphic for larger view; expand browser window for best quality view.

.. view developed with ProximityOne CV XE GIS and related GIS project.

Narrative Analysis of Metro Demographic Change in Context
A narrative summary and analysis of metro demographic characteristics and change, contextually with other data and geography, is provided for each metro in the Situation & Outlook Reports. See more about the wide-ranging subject matter that are knitted together in the schedule of updates. Examine metro dynamics in context of the U.S. overall and related states and counties.

The nation’s 382 Metropolitan Statistical Areas (MSAs) had a population of 277.1 million in 2016 (86% of the total population). MSAs increased by 2.3 million people from 2015. The nation’s 551 Micropolitan Statistical Areas (MISAs) had a population of 27.7 million in 2016 (9% of the total population). MISAs increased by 16,000 people from 2015. See more highlights below

MSAs and MISAs together, or metro areas, comprised the set of Core-Based Statistical Areas (CBSAs). Each metro/CBSA is defined as a set of one or more contiguous counties.

Related Sections
• Metros Main
• Situation & Outlook Reports
• City/Place Population Trends
• County Population Trends
• County Population Projections to 2060
• ProximityOne Data Service

Examining Population Components of Change
Population change can be examined in terms of components of change. There are three components of change: births, deaths, and migration. The change in the population from births and deaths is often combined and referred to as natural increase or natural change. Populations grow or shrink depending on if they gain people faster than they lose them. Examining a county’s unique combination of natural change and migration provides insights into why its population is changing and how quickly the change is occurring.

See more about these topics below:
• Natural Increase/Change; birth & deaths
• Migration; net international, net domestic, net migration

Using the Interactive Table – Peer Group Analysis
Use the full interactive table to examine U.S. national scope metros by population and components of change. Consider an application where you want to study metros having a 2016 population between 250,000 and 300,000. Use the tools below the interactive table to select these metros as illustrated in the graphic shown below. The graphic shows these metros ranked on the overall U.S. metro rank (percent population change 2010-2016). As shown in the graphic, the Greeley, CO metro was ranked 11th among all metros and the fastest growing metro in this group. Use the tools/buttons below the table to create custom views.

Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Creating & Using Location Shapefiles

.. GIS tools and methods to develop and update location shapefiles .. location shapefiles are essential to most GIS applications. Location shapefiles, or point shapefiles, enable viewing/analyzing locations on a map and attributes of these locations such store or customer ID, street address, city, date updated, value, ZIP code and wide-ranging attributes about the location. This section reviews tools and methods to develop and use location shapefiles. See more detail about topics covered in this section in the related Web page.

Viewing/Analyzing Store Locations in the Dallas, TX Area
The following graphic illustrates how store locations can be shown in context of other geography and associated demographic-economic attributes. This view shows store locations (red markers) in context of Dallas city (blue cross-hatch pattern) and broader metro area. Markers shown in this view are based on a location shapefile created using steps described below. The identify tool is used to click on a location and show attributes in a mini-profile.

.. view developed with ProximityOne CV XE GIS and related GIS project.

View the locations contextually with thematic patterns by tract or other geography. Combine views of store, customer, agent, competitor and other location shapefiles.
The following view shows patterns of median household income by census tract.

.. view developed with ProximityOne CV XE GIS and related GIS project.

Development of location shapefiles often starts with a list of addresses. Locations are not always address-oriented; they might be geographically dispersed measurement or transaction locations — having no address assigned. In applications reviewed here, locations are organized as rows in a CSV file. Each CSV file contains like-structured attributes for each location. The example used in this section uses store locations located in the Dallas, TX area.

There are two basic methods used to create location shapefiles: 1) geocoding address-data contained in the source data file or 2) using the latitude-longitude of the location included in the source data file record. The focus here is on option 2 — using the latitude-longitude of the location already present in the source data file.

Creating a Location Shapefile
The process of creating a location shapefile uses the CV XE GIS Manage Location Shapefile feature. With CV running, the process is started with File>Tools>ManageLocationShapefile. The following form appears.

.. ManageLocationShapefile feature/operation in ProximityOne CV XE GIS.

CV XE GIS provides other ways to create location shapefiles:
• Tools>AddShapes>Points — click points on the map window canvas.
• Tools>FindAddress — creates a single point shapefile based on specified address.
• Tools>FindAddress (Batch) — creates a point shapefile based on specified file of address records.
See details in User Guide.

Steps to Create a Location Shapefile
The process of creating the shapefile “C:\cvxe\1\locations1pts.shp” can be viewed by clicking the Run button on the form (with CV running). Two input CSV structured files are required:
• data definition file
• source data file

There are two sets of illustration location input files included with the CV installer:
• locations1_dd.csv and locations1.csv (7 locations in Johnson County, KS)
• locations2_dd.csv and locations2.csv (252 locations in Dallas and Houston)
These files are located in the \1 (typically c:\cvxe\1) folder. The marker/location shapefile used in the map shown above was created using the lcoations2 input files.

Data Definition File
The Data Definition (DD) file is an ASCII/text file structured as a CSV file. It may created with any text editor. The DD file is specific to the source data file. But in the case of recurring source data files for different periods the same DD file might apply to many source data files. There are several rules and guidelines for development of the DD file:
• there is one line/record for each field in the source data file.
• each line/record must be structured in an exact form:
.. each line/record is comprised of exactly 4 elements separated by a comma:
.. 1 field name for subject matter item
– must consist of 1 to 10 characters and include no blanks or special characters
.. 2 field type: C for character, N for numeric
.. 3 field length: an integer specifying the maximum with of the field
.. 4 maximum number of decimals for field (value is 0 for character fields)
The DD File must include three final fields:
LATITUDE,n,12,6
LONGITUDE,n,12,6
GEOID,c,15,0
The structure of these three DD file records must be as shown above. The source data file, described below, must have the LATITUDE and LONGITUDE fields populated with accurate values. The GEOID field may populated with either an accurate value of placeholder value like 0.

Example. Data for each store for the default DD file name “C:\cvxe\1\locations1_dd.csv” include the following fields/attributes:
  NAME,C,45,0
STORE,c,15,0
ADDRESS,c,60,0
CITY,c,40,0
LATITUDE,n,12,6
LONGITUDE,n,12,6
GEOID,c,15,0

Optionally create a DD File using the Create DD File button on the form. Clicking this button will create a DD File containing attributes of the dBase file specified in the associated edit box. The DD File name is created from the dBase file name. If the dBase file name is “c:\cvxe\1\locations1pts.dbf”, the DD File will be named “c:\cvxe\1\locations1pts_dd.csv”.

About the GEOID
The GEOID is a 15 character code which defines the Census 2010 census block containing each location. The GEOID is generally assigned by the ManageLocationShapefile operation and is one of the important and distinctive features of this tool. The GEOID is used to uniquely determine, with the GIS application, any of the following: state, county, census tract, block group, or census block.

The GEOID, as used in this section, is the 15 character Census 2010 geocode for the census block. The GEOID value 481130002011012 (see in location profile in map at top of section) is structured as:
state FIPS code: 48 (2 chars)
county FIPS code: 113 (3 chars)
census tract code 000201 (6 chars)
census block code: 1012 (4 chars) (block group code: 1 — first of 4 characters)

About the Source Data File
The Source Data File is an ASCII/text file structured as a CSV file. It is typically developed by exporting/saving an Excel or dBase file in CSV structure. There are several rules and guidelines for development of the source data file:
• fields must be structured and arranged as defined in the DD File.
• character fields must not contain embedded commas.
• final items in record sequence must be:
.. LATITUDE – must have accurate decimal degree value; 6 digit precision suggested.
.. LONGITUDE- must have accurate decimal degree value; 6 digit precision suggested.
.. GEOID – this may be 0, not assigned or the accurately assigned GEOID value.
– optionally create/rewrite the GEOID used in the new shapefile.

Updates; Combining Vintages of Location Attributes
Location based data might update frequently, even daily. The recommended method to add, update and extend the scope of location-based data is to create new address shapefiles corresponding to different vintages or dates covered. The structure of the files must be the same so that they files can be used together or separately. Suppose there is one set of data covering year to date and a second set of data covering the following month. The ManagePointShapefile operation would be run once for each time period. Two shapefiles would be created. These shapefiles may be added to a GIS project and used separately or in combination to view/analyze patterns.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Examining Houston Metro Demographic-Economic Characteristics

.. tools & data to examine metro demographic-economic characteristics .. this Houston, TX metro focused section is one of several similar metro sections that will be covered in weeks ahead.  Each metro-focused section provides a summary of tools and data that can be used to view, rank, compare, analyze conditions and trends within the metro and this metro relative to other metros, regions and the Nation.  The ready-to-use GIS project/datasets provide the basis for extended data/geographic views and analysis immediately.  See more detail about topics covered in this related Web section.

Relating your data to demographic-economic characteristics and trends in a region involves more than information provided by a report or set of statistical tables. It is important to use your data to be able to identify areas of missed opportunity and competitive position. It is important to have a “10,000 foot” view as well as understanding individual neighborhoods and market/service areas. Geographic Information System (GIS) tools, with the right set of geographic, demographic and economic data can facilitate decision-making through the use of visual and tabular data analytics.

This section provides information on installing and using the Houston Metro Demographic-Economic GIS software and project/datasets. This same scope of data, tools and operation is available for any metro, state or combination.

10,000 Foot View
The following graphic shows patterns of median household income by census tract for the Houston metro area. This is the start-up view when using the GIS tools and data described below. The color patterns/intervals are shown in the highlighted layer in legend at left of map window. Use the GIS tools described below to develop thematic pattern maps for a range of data and criteria.

.. view developed using the CVGIS software.

See more about census tracts; see tracts main page.

Several additional views follow, developed using this same GIS project. These views illustrate different levels of geographic granularity and patterns of different subject matter.

Median Household Value by Block Group
See more about block groups; see block groups main page.

.. view developed using the CVGIS software.

Population/Housing Unit by Block
See more about census blocks; see census block main page.

.. view developed using the CVGIS software.

Zoom-in to Sugarland/Fort Bend County
See more about cities/places; see cities/places main page.
Access data for any city using interactive table.

.. view developed using the CVGIS software.

Further Zoom-in Showing Street/Road Detail
See more about streets.

.. view developed using the CVGIS software.

Additional Information
See the related Houston metro Situation & Outlook Report.

Using the GIS Software and Project/Datasets
(requires Windows computer with Internet connection)
1. Install the ProximityOne CV XE GIS
… run the CV XE GIS installer
… requires UserID; take all defaults during installation
2. Download the Houston Metro GIS project fileset
… requires UserID; unzip Houston Metro GIS project files to local new folder c:\p1data
3. Open the c:\p1data\us1_metros_houston.gis project
… after completing the above steps, click File>Open>Dialog
… open the file named c:\p1data\us1_metros_houston.gis
4. Done. The start-up view is shown above.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Monthly Local Area Employment Situation: 2017

.. tools & data to examine the local area employment situation .. this update on the monthly and over-the-year (Jan 2016-Jan 2017) change in the local area employment situation shows general improvement. Yet many areas continue to face challenges due to both oil prices, the energy situation and other factors.  This section provides access to interactive data and GIS/mapping tools that enable viewing and analysis of the monthly labor market characteristics and trends by county and metro for the U.S. See the related Web section for more detail. The civilian labor force, employment, unemployment and unemployment rate are estimated monthly with only a two month lag between the reference date and the data access date (e.g., March 2017 data are available in May 2017).

Use our new tools to develop your own LAES U.S. by county time series datasets. Link your data with LAES data. Run the application monthly extending/updating your datasets. Optionally use our 6-month ahead employment situation projection feature. See details

Unemployment Rate by County – January 2017
The following graphic shows the unemployment rate for each county.

— view created using CV XE GIS and associated LAES GIS Project
— click graphic for larger showing legend details.

New with this post are the monthly 2016 monthly data on the labor force, employment, unemployment and unemployment rate. Use the interactive table to view/analyze these data; compare annual over the year change, January 2016 to January 2017.

View Labor Market Characteristics section in the Metropolitan Area Situation & Outlook Reports, providing the same scope of data as in the table below integrated with other data. See example for the Dallas, TX MSA.

The LAES data and this section are updated monthly. The LAES data, and their their extension, are part of the ProximityOne Situation & Outlook database and information system. ProximityOne extends the LAES data in several ways including monthly update projections of the employment situation.

Interactive Analysis
The following graphic shows an illustrative view of the interactive LAES table. In January 2017, 149 counties experienced an unemployment rate of 10% or more. The graphic shows counties experienced highest unemployment rates. Use the table to examine characteristics of counties and metros in regions of interest. Click graphic for larger view.

Metro by County; Integrating Total Population
The following graphic shows an illustrative view of the interactive LAES table focused on the Chicago MSA. By using the query tools, view characteristics of metro component counties for any metro. This view shows Chicago metro counties ranked on January 2017 unemployment rate (only 10 of the 14 metro counties shown in this view). Click graphic for larger view.

The above view shows the total population (latest official estimates) as well as employment characteristics.

More About Population Patterns & Trends
U.S. by county population interactive tables & datasets:
  • Population & Components of Change 2010-2016 – new March 2017.
  • Population Projections to 2060 2010-2060 – updated March 2017.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Accessing & Using ZIP Code Demographics

.. tip of the day .. a continuing weekly or more frequent tip on developing, integrating, accessing and using geographic, demographic, economic and statistical data. Join in .. tip of the day posts are added to the Data Analytics Blog on an irregular basis, normally weekly. Follow the blog to receive updates as they occur.

… February 2017 updates .. 5 ways to access/analyze the most recent estimates of median housing value and other subject matter by ZIP Code area .. updates on accessing/downloading/using American Community Survey (ACS1115) 5-year estimates. See more detail in related Web section.

Site analysis (Option 5 below)
– create site analysis profiles from a location/ZIP code.

Contents
Five data access and use options, listed in the links below, are reviewed. Each method illustrates how ZIP code demographic-economic data can be accessed/ analyzed/used in different contexts. The most basic data access/data download is illustrated in Option 3. The following links open new windows that take you to the related section with more detail.
Option 1 – View the data as a thematic pattern map.
Option 2 – View, compare, rank query data in interactive tables.
Option 3 – Access data using API Tools; create datasets.
.. Option 3a – Extended ZIP Code subject matter access.
.. Option 3b – ZIP code urban/rural data access.
.. Option 3c – Additional API ACS data access resources.
Option 4 – View $MHI in structured profile in context of related data.
Option 5 – Site analysis – view circular area profile from a location.

Related ZIP Code Data Access & Use sections
Interactive access to demographics based on an address
Summary of ZIP Code Data Resources & Tools
10 Reasons to use Census Tracts Versus ZIP Codes
Analyzing Census Tract Demographics by ZIP Code Area
ZIP Code to Census Tract Equivalence Table
ZIP Code Urban/Rural Geography & Demographics
Mapping ZIP Code Demograhics
Housing Price Index by 5-digit ZIP Code – time series; annual updates
Housing Price Index by 3-digit ZIP Code – time series; quarterly updates
ZIP Code Business Establishment, Employment & Earnings by industry
ZIP Code Retail Trade Establishment & Sales by industry
ZIP Code Equivalence Tables — ZIP Code to School District

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Census 2020 LUCA Program and You

.. what would be the financial impact of a one-percent understatement in the Census 2020 population count? Many political districts are drawn based upon population change and shifts, and allocations of government funding and services are made based upon official population data. Consider this one specific example. For each one-percent of the Atlanta MSA population missed in Census 2020, potentially due to less than fully accurate address and location data, the financial impact could be on the order of $414 million per year. How and why? At margin, each person not counted in the decennial census results in a per capita disposable income loss for the area in the magnitude of $5,494 in 2000, and $6,770 per person in 2020. 61,100 people undercounted times $6,770 yields $414 million.

This section is about the Censue 2020 Local Update of Census Addresses (LUCA) program and how it might impact the reduction in undercount .. and make the data more accurate for wide-ranging needs and uses. Read on for details about the LUCA program.

Atlanta-Sandy Springs-Roswell, GA MSA
The Atlanta metro shown with black bold boundary. More about this metro.

– View developed with CV XE GIS software.
– Click graphic to view patterns of neighborhood economic prosperity.

Financial Impact Details … the 2015 per capita current transfer payments (PCTP) in the Atlanta-Sandy Springs-Marietta MSA were $6,132, up from $5,494 in 2010. The PCTP figure in 2020 may be $6,770. For each one-percent of the Atlanta MSA population (61,100 people) missed in Census 2020, potentially due to less than fully accurate address and location data, the financial impact could be in the order of $414 million (61,100 x $6,770) per year as of Census 2020.  $414 million per year based on the 2020 population and PCTP.

Financial Impact in Your Areas of Interest
Estimate the financial impact in your areas of interest. Get the 2010 and 2015 population and PCTP data from the REIS Interactive Table for any county or state.  Compute the 2020 population and PCTP values, potential undercount to determine the financial impact on an area of interest

Census 2020 LUCA Overview
The Census 2020 LUCA program is an initiative of the Census Bureau, partnering with thousands of state and local governments across the U.S. At the core of this program, Census provides address list data to communities; those communities compare those data with their own data and provide address/geographic updates back to the Census Bureau.  The updated address and geographic data are integrated into the TIGER/Line files  — geographic backbone for collecting and tabulating the Census results. This important MAF/TIGER address-plus update program will help insure improved accuracy for Census 2020. LUCA is a geographic data development program engaging local communities across the U.S.

ProximityOne works with local areas to improve the TIGER/Line files leading up to Census 2020. Using the CV XE GIS software and specialized expertise, we helped hundreds of governmental units, including all of the State of Georgia, improve the coverage and content of the TIGER/Line files and thus the accuracy and completeness of Census 2010.

The Census 2020 LUCA program is starting now in 2016.  See the full schedule and related details in the LUCA Web section.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Largest School Districts Enrollment Characteristics

..  while school district enrollment is reported by school districts, only public school enrollment is reported. Public and private school enrollment are available by district from the American Community Survey (ACS 2015).  With few exceptions, school districts do not report on demographic-economic characteristics of the school district.  These data are only available from ACS. See the related interactive table to access and compare enrollment characteristics of school districts of interest.

In 2015, there were 1,016 school districts with total population of 65,000 or more (of total 14,650) for which “1-year estimates” were tabulated.  These estimates are based on respondent data for calendar year 2015.  This section summarizes selected enrollment characteristics of the largest districts and provides access to much more detail for each of these districts.

Largest 10 School Districts
The following graphic shows the largest 10 school districts based on the size of the 2015 school age population ages 5-to-17. Click graphic for larger view.

Mapping the Largest School Districts
The following graphic shows locations of the largest school districts as red markers. Click graphic for larger view that opens in a new window. Expand browser window for bets quality view. The larger view shows school district locations on context of metropolitan statistical areas (MSAs).

  view created using CV XE GIS software and related GIS project.

School Districts Tabulated in ACS 2015
ACS 2015 data are tabulated for 14,650 school districts (among many other wide-ranging geography). The following table shows the number of districts for which 1-year estimates and 5-year estimates are tabulated. There are 1,016 districts for which 1-year estimates were tabulated.

These data show enrollment of residents of the district whether enrolled in that district or otherwise. Enrollment data are provided for preschool, K-12 and college and not enrolled.

Using the School District Enrollment Interactive Table
The following graphic illustrates use of the interactive table (click that link to use the table) showing enrollment in kindergarten by school district ranked in descending order.

– click graphic for larger view.

Using the table, you can select total, public or private enrollment for selected grade ranges.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.