Category Archives: Patterns

Population Living Alone & Age 65 Years and Over

.. how many people are living alone in your community, neighborhood? How does this population impact the community? What are their special needs? How does this population vary by area and population group? There were 37.9 million one-person households, 29% of all U.S. households in 2022. In 1960, single-person households represented only 13% of all households. These estimates are based on the 2022 Current Population Survey (CPS). Moving forward, the number of one-person households, people living alone, will increase at the rate of one million or more per year. People in households exclude people living in group quarters. This post examines patterns of people living alone with focus on people living alone age 65 year and over and distribution by small area geography.

While the CPS data provide a current snapshot of the number of people living alone, we have to use data from the American Community Survey to obtain data for smaller area geography like counties and census tracts.

Population Living Alone by Census Tract –Visual Data Analytics
The four graphics below show patterns of the population living alone by census tract. These views have been developed using the Visual Data Analytics (VDA GIS) tools with integrated demographics. Develop variations on these views using the VDA Web GIS using only a web browser.

Patterns of Population Living Alone by Tract

.. click graphic for larger view.

Patterns of Population 65 and Over Living Alone by Tract

.. click graphic for larger view.

Patterns of Population Living Alone by Tract — Houston Metro Area

Patterns of Population 65 and Over Living Alone by Tract — Houston Metro Area

Examine the Data in More Detail
As noted in this related New York Times story, nearly 26 million Americans 50 or older now live alone, up from 15 million in 2000. Older people have always been more likely than others to live by themselves makes up a bigger share of the population than at any time in the nation’s history. The trend has also been driven by deep changes in attitudes surrounding gender and marriage. People 50-plus today are more likely than earlier generations to be divorced, separated or never married. Similar ACS data as used to develop the graphics shown above are available by race/origin. These data are based on the ACS 2020 data; the same scope of data will be available from ACS 2021 to be released in December 2022.

About VDA GIS
VDA Web GIS is a decision-making information resource designed to help stakeholders create and apply insight. Use VDA Web GIS with only a Web browser; nothing to install; GIS experience not required. VDA Web GIS has been developed and is maintained by Warren Glimpse, ProximityOne (Alexandria, VA) and Takashi Hamilton, Tsukasa Consulting (Osaka, Japan).

About the Author
Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Join Warren on LinkedIn.

Housing Price Index by ZIP Code – How Housing Markets are Trending

.. housing prices can impact residential investment and affect economic growth, business opportunities and the housing market. The Housing Price Index (HPI) is one measure of how housing prices are changing. The HPI by ZIP code, as reviewed here, is an index based on the year 2000=100. Changing trends in the HPI can used used the determine the relative costs of housing and change in housing valuation. Hosing prices, and the HPI, are only one part of determining how housing markets are trending. Other measures important to examine include building permits and new construction.

Examining Housing Price Trends
Use the VDA Web GIS tool to examine the Housing Price Index for ZIP Codes of interest. Create maps and tabular profiles such as the one shown below.

Video of Steps to Explore HPI by ZIP Code
Click graphic to view video showing how to use VDA Web GIS to access a ZIP Code profile.

About VDA Web GIS
VDA Web GIS is a decision-making information resource designed to help stakeholders create and apply insight. VDA Web GIS has been developed and is maintained by Warren Glimpse, ProximityOne (Alexandria, VA) and Takashi Hamilton, Tsukasa Consulting (Osaka, Japan).

About the Housing Price Index
The Housing Price Index used here is developed by the Federal Housing Fiance Agency (FHFA). The FHFA House Price Index is the nation’s only public, freely available house price indexes that measure changes in single-family home values based on data from all states that extend back to the mid-1970s.

About the Author
Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Join Warren on LinkedIn.

Examining Age/Gender Distributions with Population Pyramids

Population pyramids provide a data visualization often used in demographic analysis because they provide a condensed but powerful illustration of a population’s age distribution by gender. You can use the ChartGraphics tool to create population pyramids for the U.S., states, counties and other areas as reviewed in this section. For example, examine Census 2020 population by 5-year age group by gender for your area of interest.

A population pyramid is essentially two bar charts, one for the male population on the left and the other for the female population on the right. The base of the pyramid, or bottom of the chart, has the youngest population (ages 0-4) and the top has the oldest (ages 85 and older). The following pyramids illustrate how Orange County, CA has changed from 2000 to 2020.


.. click here to view above graphic and table.


.. click here to view above graphic and table.

About the Author
Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Join Warren on LinkedIn.

Arizona’s Shifting Demographics

.. part of a state-by-state series .. these periodic posts examine how and why the state and its counties changed bwteen 2010 and 2020. Later posts will provide more of a drill-down look at change. Click the Follow link at right to receive new and updated information.

Census 2020 Arizona Demographics
The Arizona July 1, 2020 Census model-based population estimate of 7,421,401 compares to the Census 2020 population count of 7,151,502 people. The difference of -269,899 between the 2020 estimate and the 2020 count can be explained by several factors. First, the estimate is for a point in time that is three months later that the Census. There will be a tendency of the Census Bureau to adjust the Joly 1, 2020 population estimate to conform to the Census 2020 value. The July 1, 2020 estimate will likely be adjusted to reflect this change when the July 1, 2021 estimates are released April/May of 2022.

The 2020 population estimate is determined using a component method. The 2020 population estimate is the sum of the 2019 population estimate (7,291,843 for Arizona) and each of the following for the period July 1, 2019 through June 30, 2020 …
plus births (AZ 81,451)
less deaths (AZ 66,385)
plus international migration (AZ 9,272)
plus domestic migration (AZ 105,435)
plus an estimation residual (AZ -214)

Any one or a combination of these 6 estimate based values could be wrong, or the Census 2020 value could be wrong. It is likely a combination of all of these factors.

The remainder of this section is based on Census Bureau model-based estimates, released April 26, 2021. See more about these data for all U.S. counties in the Demographics 2060 section where Arizona demographic projections can be examined.

Visualizing Arizona Demographic Change
The following graphic illustrates how Arizona county demographics have changed from 2010 to 2020. The labels show the actual percent change; the color patterns, as shown in the legend, provide a visual thematic pattern view.

Examining the How and Why of Demographic Change
The following table shows a row for the state and each county, providing more detail as to the where, what/how much, how and why demographic change has occurred from 2010 to 2020.


Click graphic for larger view.

Looking Ahead
More geographically detailed data (counties for example) based Census 2020 (August 2021) will reveal much starker percentage differences between the 2020 estimates versus Census results. The ProximityOne annual estimates and projections to 2060 are developed using two basic series (and variation among those (low, base, high): Census 2020 based series and 2020 estimates series. See http://proximityone.com/demographics2060 for details.

Learn more — Join me in the Data Analytics Web Sessions
Join me in a Accessing & Using GeoDemographics Web Session where we discuss topics relating to measuring and interpreting the where, what, when, how and how much demographic-economic change is occurring and it’s impact.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Census 2020 – First Results

.. the first results of Census 2020, the apportionment data, were released on April 26, 2021.  Based on the decennial census, the United States total resident population increased from 308,745,538 (2010) to 331,449,281 (2020), a change of 22,703,743 (7.3%). For now, these data should be trusted and assumed accurate.  The apportionment data provide only total population counts at the state level.  More will be revealed about the accuracy of these data when the redistricting data are released in August 2021.

Apportionment of the U.S. House of Representatives
Congressional apportionment is the process of dividing the 435 members, or seats, in the House of Representatives among the 50 states based on the population data from the decennial census. See more about congressional districts and demographic-economic characteristics. See this related web section for detailed information on apportionment. Use the interactive table to view/analyze the Census 2010 and Census 2020 apportionment data. The following view shows patterns of congressional seats based on the decennial census. Labels show the number of seats based on the 2020 Census. Color patterns show the change in seats, 2010 to 2020.

Census 2020: the Process & Challenges
Counting the total population and selected population attributes in a pandemic is not only challenging but not possible.  During 2020, as the data were collected, it seemed good news that more than two-thirds of the potential respondents had completed the questionnaire.  But then the questions set in.  Bureau public announcements frequently made reference to the number or housing units and the number of households (occupied housing units) “accounted for” reaching 90 percent and progressively more.  By observation, using administrative record data, and other methods, housing units can be much more easily counted than the population and population attributes.  Likewise, determining the number households is  easier than determining the population count and characteristics.

The fact that the state population counts were unexpectedly different from the Bureau’s model based estimates is troubling.  We seek more assurance that the count of  population and population characteristics — by location — are as represented by the apportionment data.

Census Bureau 2020 Model-Based Estimates
New Census Bureau sourced U.S. by county model-based population estimates by age/gender/race-origin as of July 1, 2020 will be released by the Bureau in May 2021.  These estimates are independent of Census 2020 and make use of methods used annually throughout the 2010-2020 period.  An upcoming blog will report on ProximityOne’s analysis of these estimates in comparison with the Census 2020 data.

ProximityOne Estimates & Projections to 2060
ProximityOne annual demographic estimates and projections 2010-2060 by county will begin a new update cycle in May 2021.  The schedule is shown here.  

Starting with the May updates, two base projection series will be developed and progressively updated: one controlled to the Census 2020 data and one based on continued use of 2020 model-based estimates. As more information is released from Census 2020. Follow this blog for more information on evolving developments.

Learn more — Join me in the Data Analytics Web Sessions
Join me in a Accessing & Using GeoDemographics Web Session where we discuss topics relating to measuring and interpreting the where, what, when, how and how much demographic-economic change is occurring and it’s impact.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

U.S. Demographic-Economic Insights

The results of the Census 2020 will not provide us with a good picture of the United States demographic-economic situation, mainly as a result of limited scope subject matter. While the Census 2020 data are important due to their more accurate and up-to-date small area demographics, and data tabulated by census block, only a small number of demographic subject matter items are available from Census 2020. The scope of subject matter is limited by items tabulated based on the questionnaire.

In comparison, the annual American Community Survey (ACS) data provide a much broader range of subject matter. Based largely on the 2019 ACS (the most up-to-date with data for small area geography .. released in December 2020), ProximityOne has developed tools/data to develop demographic-economic insights for the most widely used types of geography.

Demographic-Economic Insights Role & Scope
ACS and related data and ProximityOne tools have been used to develop the U.S. demographic-economic insights report, reviewed here, illustrating the scope and organization of the data and how it can be used. You can develop similar comparative analysis reports for your areas of interest. See more about the role and scope of the Demographic-Economic Insights.

U.S. National Scope Demographic-Economic Insights
View the U.S. National Scope Demographic-Economic Insights report develop using the ProximityOne Insights tool. This report is organized into two subject matter description columns, four statistical data columns and four subject matter groups. The first two statistical data columns present data based on the ACS 2019 1-year estimates. The second set of statistical data columns show data based on the 2019 ACS 5-year estimates (values centric to mid 2017). This report is a useful resource to compare/contrast data values based on the 1-year estimates side-by-side with the 5-year values. The four subject matter groups are reviewed below.

General Demographics
Graphic shows partial list of “D” items .. click graphic for larger view.
.. view this section in the U.S. Insights report.

Social Characteristics
Graphic shows partial list of “S” items .. click graphic for larger view.
.. view this section in the U.S. Insights report.

Economic Characteristics
Graphic shows partial list of “E” items .. click graphic for larger view.
.. view this section in the U.S. Insights report.

Housing Characteristics
Graphic shows partial list of “H” items .. click graphic for larger view.
.. view this section in the U.S. Insights report.

Creating Insights and Talking Points
The four subject matter groups provide a dense array of tabular statistical data that can be overwhelming to consume. Yet, not every topic can be distilled to just a few numbers. The scope of key data depends on the objective presentation, audience and desired talking points.

For example, a briefing or synopsis might include only 10-15 subject matter items such as … this report tells us that in 2019 (based on 2019 1-year estimates), the total resident population was estimated to be 328,239,523. The median age was 38.5 years. The percent high school graduates was 88.6%. The number of housing units was 139,686,209. The percent owner occupied housing units was 64.1%. These measures are roughly the same today, at the end of 2020, even with the pandemic impact. Some other measures in the report as not as reflective “as of today”.

While data shown here do not fully summarize the state of the Nation, there provide many insights. The same can said for any of the geographic areas covered. To obtain a better picture of the state of the Nation, we need supplementary subject matter, more up-to-date data and trending data that give clues into what’s happening.

Learn more — Join me in the Situation & Outlook Web Sessions
Join me in a Situation & Outlook Web Session where we discuss topics relating to measuring and interpreting the where, what, when, how and how much demographic-economic change is occurring and it’s impact.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Examine Neighborhood Demographics for any City

.. examine neighborhood demographics for any city (or county, school district ..) using the no fee, no registration new beta version of the Visual Data Analytics (VDA2) Web GIS. Nothing to install, access with any Web browser. Use this unique and powerful resource to make custom maps similar to the one shown below.

Patterns of Economic Prosperity by Neighborhood in Tampa, FL Area
Examine patterns of economic prosperity by neighborhood in context of a selected county, city or other geography. The following view shows patterns of median household income by census tract in Tampa, FL area. The bold black border shows the city boundary for Tampa; the thematic pattern shows colors associated with intervals of median household income ($MHI). The $MHI layer is set with a see through transparency enabling a view of the underlying topology. Create a view similar to this for any of the 19,500 cities in the U.S. See detailed steps to develop this view in the notes below the graphic.

Map Your Own Map View
Follow these stpe to create your own neighborhood by city map view.  Use other features of VDA2 to access demographic-economic data in a tabular or visual form.

More About VDA2 Web GIS
New in VDA2, not available in VDA1, are the table/query operations. View/analyze data for any layer in a spreadsheet/grid form.  Sort and perform queries on subject matter of interest. Click a button in the data grid to zoom to that geographic area in the map window.  The following graphic shows the VDA2 start-up view after clicking the Query/Table On/Off button. This button (shown below map window at right by pointer) toggles the table view on/off.

.. click graphic for larger view.

Learn more — Join me in the Situation & Outlook Web Sessions
Join me in a Situation & Outlook Web Session where we discuss topics relating to measuring and interpreting the where, what, when, how and how much demographic-economic change is occurring and it’s impact.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Housing Value Appreciation

.. U.S. housing prices rose nationwide in August, up 1.5% from the previous month, based on the FHFA Housing Price Index (HPI). Housing prices rose 8.0% from August 2019 to August 2020.

If you purchased a housing unit in 2019Q2 at $260,200 (the ACS 2019 median housing value), the value of the unit in 2020Q2 would be $271,000, an increase of 4.2%. A good deal in this era of low interest rates.

U.S. housing prices posted a strong increase in August .. the 1.5% increase is the largest one-month price increase observed since the start of the HPI measurement in 1991. This large month-over-month gain contributes to an already strong increase in prices over the summer. These price gains can be attributed to the historically low interest rates, rebounding housing demand and continued supply constraints.

The HPI has various limitations as a measure to assess the housing market. One important limitation is that it a measure in isolation; other related demographic-economic measures are not included. This is unlike the American Community Survey (ACS) estimates of the median housing value ($MHV), used as an annual, year-over-year measure of housing value appreciation.

Median Housing Value
The U.S. ACS 1-year estimate of median housing value ($MHV) increased from $229,700 in 2018 to $240,500 in 2019. The ACS 2020 estimate, which will be impacted by the pandemic, will not be available until September 2021. The ProximityOne 2020 estimate of $MHV is $270,500.

Click this API link to view a CSV-like file showing the 2019 median household income and median housing value by state. Join me in a Data Analytics Web Session (see below) to integrate these data into a map view like shown below. Add other data.

Patterns of Median Housing Value by State

– view developed using ProximityOne CV XE GIS
– click graphic for larger view

An advantage of using the ACS or ACS-like $MHV data is that this measure is synchronized with other related measures, like total population, total housing units, housing units by tenure and age built and so on. Though a popular measure to assess geographically comparable housing values, the $MHV has many limitations. A key limitation is that few survey responders really know the value of their home. Other limitations have to do with the definition itself and how the data are collected/developed. ACS $MHV measures value of only occupied housing units and excludes houses on 10 or more acres and housing units in multi-unit structures. See more. While there are other Federal sources of $MHV, it remains that the usabilty aspects of the ACS or ACS-like measures are second to none.

Learn more — Join me in the Situation & Outlook Web Sessions
Join me in a Situation & Outlook Web Session where we discuss topics relating to measuring and interpreting the where, what, when, how and how much demographic-economic change is occurring and it’s impact.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Tip of the Day – Examining Median Housing Value – 2020 Update

.. tip of the day .. a continuing weekly or more frequent tip on developing, integrating, accessing and using geographic, demographic, economic and statistical data. Join in .. tip of the day posts are added to the Data Analytics Blog on an irregular basis, normally weekly. Follow the blog to receive updates as they occur.

.. in this era of uncertainly, we ponder the risk and opportunity associated with changing housing value.  Median housing value by ZIP Code area is one metric of great interest to examine levels and change.  While only one measure useful to examine housing characteristics, it is part of a broader set of demographic-economic data that enable analysis of the housing infrastructure and change in a more wholistic manner. How is housing value trending at the neighborhood level in 2020 and beyond? See more about the Situation & Outlook.

.. 5 ways to access/analyze the most recent estimates of median housing value and other subject matter by ZIP Code area .. based on the American Community Survey (ACS) 5-year estimates. See related Web section.

Option 1. View the data as a thematic pattern map
Option 1 is presented as Option 1A (using CV XE GIS) and Option 1B (using Visual Data Analytics VDA Mapserver). See more about GIS.

Option 1A. View $MHV as a thematic pattern map; using CV XE GIS:
— Median Housing Value by ZIP Code Area; Los Angeles Area
Click graphic for larger view with more detail.

Click graphic for larger view.
Use the Mapping ZIP Code Demographics resources to develop similar views anywhere in U.S.

Option 1B. View $MHV (ACS 2018) as a thematic pattern map; using VDA Mapserver:
— Median Housing Value by ZIP Code Area; Phoenix/Scottsdale, AZ area
Click graphic for larger view with more detail.

Click graphic for larger view. Expand window to full screen for best quality view. View features:
– profile of ZIP 85258 (blue crosshatch highlight) shown in Attributes panel at left
– values-colors shown in Legend panel at left
– transparency setting allows “see through” to view ground topology below.
Use VDA Mapserver: to develop similar views anywhere in U.S. using only a browser. Nothing to install.

Option 2. Use the interactive table:
– go to http://proximityone.com/zip18dp4.htm (5-year estimates)
– median housing value is item H089; see item list above interactive table.
– scroll left on the table until H089 appears in the header column.
– that column shows the 2018 ACS H089 estimate for for all ZIP codes.
– click column header to sort; click again to sort other direction.
– see usage notes below table.

Option 3. Use the API operation:
– develop file containing $MHV for all ZIP code areas in U.S.
– load into Excel, other software; link with other data.
– median housing value ($MHV) is item B25077_001E.
click this link to get B25077_001E ($MHV) using the API tool.
– this API call retrieves U.S. national scope data.
– a new page displays showing a line/row for each ZIP code.
– median housing value appears on the left, then ZIP code.
– optionally save this file and import the data into a preferred program.
– more about API tools.
Extending option 3 … accessing race, origin and $MHV for each ZIP code …
click on these example APIs to access data for all ZIP codes
.. get extended subject matter for all ZIP codes
.. get extended subject matter for two selected ZIP codes (64112 and 65201)

Items used in these API calls:
.. B01003_001E – Total population
Age
.. B01001_011E — Male: 25 to 29 years (illustrating age cohort access)
.. B01001_035E — Female: 25 to 29 years (illustrating age cohort access)
Race/Origin
.. B02001_002E – White alone
.. B02001_003E – Black or African American alone
.. B02001_004E – American Indian and Alaska Native alone
.. B02001_005E – Asian alone
.. B02001_006E – Native Hawaiian and Other Pacific Islander alone
.. B02001_007E – Some other race alone
.. B02001_008E – Two or more races
.. B03001_003E – Hispanic (of any race)
Income
.. B19013_001E – Median household income ($)
.. B19113_001E – Median family income ($)
Housing & Households
.. B25001_001E – Total housing units
.. B25002_002E – Occupied housing units (households)
.. B19001_017E — Households with household income $200,000 or more
.. B25003_002E — Owner Occupied housing units
.. B25075_023E — Housing units value $500,000 to $749,999
.. B25075_024E — Housing units with value $750,000 to $999,999
.. B25075_025E — Housing units with value $1,000,000 or more
.. B25002_003E – Vacant housing units
.. B25077_001E – Median housing value ($) – owner occupied units
.. B25064_001E – Median gross rent ($) – renter occupied units

View additional subject matter options.

Option 4. View the $MHV in context of other attributes for a ZIP code.
Using – ACS demographic-economic profiles. Example for ZIP 85258:
General Demographics ACS 2018 .. ACS 2017
Social Characteristics ACS 2018 .. ACS 2017
Economic Characteristics ACS 2018 .. ACS 2017
Housing Characteristics ACS 2018 .. ACS 2017 .. $MHV shown in this profile.

Option 5. View 5- and 10-mile circular area profile from ZIP center.
– profile for ZIP 80204 dynamically made using SiteReport tool.
– with SiteReport running, enter the ZIP code, radii and click Run.
– comparative analysis report is generated in HTML and Excel structure.
Click this link to view resulting profile.
– from the profile, site 2 is 1.9 times the population of site 1.
– Site 1 $MHV is $296,998 compared to Site 2 $MHV $269,734.
– GIS view with integrated radius shown below.

This section is focused on median housing value and ZIP code areas. Many other subject matter items will be apparent when these methods are used. Optionally adjust above details to view different subject matter for ZIP codes.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

How & Why County Demographics are Changing

.. the pandemic impact on population change remains in flux. For many counties it will impact each component of population change: births, deaths and migration. The magnitude and duration of the impact on each component will vary by county and become more measurable in the months ahead. The “How & Why County Demographics are Changing” will be updated later in 2020.

Here we look at population and components of change by county for the period 2010 to 2019 .. tools and data to examine how the U.S. by county population is changing. These latest 2019 estimates were released this spring. See more in the related web section.

Top 25 Counties with Largest Population Change 2010-2019
Create a table similar to the one shown below using the interactive table. Sort on selected criteria and within a selected state or metro.

Patterns of Population Change by County, 2010-2019
The following graphic shows how counties have gained population (blue and green) and lost population (orange and red) during the period 2010 to 2019. Click graphic for larger view; expand browser window for best quality view.

.. view developed with ProximityOne CV XE GIS and related GIS project.

Examining Population Components of Change
Population change can be examined in terms of components of change. There are three components of change: births, deaths, and migration. The change in the population from births and deaths is often combined and referred to as natural increase or natural change. Populations grow or shrink depending on if they gain people faster than they lose them. Examining a county’s unique combination of natural change and migration provides insights into why its population is changing and how quickly the change is occurring. The above graphic shows these relationships.

County Population & Components of Change 2010-2019 – Interactive Table
View/analyze county population and components of change characteristics and trends in a tabular manner using the interactive table. The following static graphic shows net migration 2010-2019 by year for Houston, TX metro component counties. Rows have been ranked in descending order based on 2010 population. It is easy to see how the net migration in Harris County has been decreasing annually since 2015.

Try it yourself. Use the interactive table to examine counties/areas of interest.

Situation & Outlook Web Sessions
Join me in a Situation & Outlook Web Session where we discuss topics relating to measuring and interpreting the where, what, when, how and how much demographic-economic change is occurring and it’s impact.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.