Category Archives: TX Houston

The New Urban Geography

.. the nation’s urban population increased by 6.4% between 2010 and 2020 based on 2020 Census data and a change in the way urban areas are defined. As a result of these changes, 1,140 areas containing approximately 4.2 million people, classified as urban in 2010 are now rural. See more about the 2020 urban/rural geography/population. See more about the urban population.

Patterns of the New Urban Geography

click graphic for larger view

As of 2020, there are 2,613 Urban Areas in the U.S. with a combined Census 2020 population of 265,149,027 (80%). The remaining area is defined as rural with Census 2020 population of 66,300,254 (20%).
  • Use this interactive table to view, sort urban areas.
  • Use this interactive table to view, sort states by 2010/2020 urban/rural.

These Federal designated urban areas are comprised of densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or a population of at least 5,000. Rural encompasses all population, housing, and territory not included within urban areas.

Importance of Urban/Rural Designations
Data users and researchers interested in analyzing data for urban and rural population and housing use urban area geostatistical data routinely updated by statistical agencies. Analysts use urban area data to study patterns of urbanization, suburban growth and development, and urban/rural land area change.

Larger Urban Areas form the nucleus of Core-Based Statistical Areas (metros). Many metro areas (one or more contiguous counties) contain large rural areas even though some consider metros as large cities. Importantly, they are not the same.

Various federal and state agencies use urban and rural definitions as the basis for their own urban and rural definitions and settlement classifications for use in tabulating and presenting statistical data. The National Center for Education Statistics uses the urban area definitions in its locale codes classification. The U.S. Department of Agriculture uses the urban area classification as the basis for various urban and rural classifications used to analyze and report on demographic and economic patterns in rural areas.

Other government agencies use Urban Area designations to determine program eligibility and in their funding formulas. The Federal Highways Administration uses urban areas of 50,000 or more population to establish Metropolitan Planning Organizations. For rural health programs, a clinic qualifies as a rural health clinic if it is located outside the boundaries of any urban area.

GeoSpatial Analysis of New Urban Geography
Use the VDA Web GIS to examine urban/rural area geographic, demographic and economic make-up and in context of other geography and subject matter.

Urban Areas in the Houston, TX Region

click graphic for larger view

About VDA GIS
VDA Web GIS is a decision-making information resource designed to help stakeholders create and apply insight. Use VDA Web GIS with only a Web browser; nothing to install; GIS experience not required. VDA Web GIS has been developed and is maintained by Warren Glimpse, ProximityOne (Alexandria, VA) and Takashi Hamilton, Tsukasa Consulting (Osaka, Japan).

About the Author
Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Join Warren on LinkedIn.

Population Living Alone & Age 65 Years and Over

.. how many people are living alone in your community, neighborhood? How does this population impact the community? What are their special needs? How does this population vary by area and population group? There were 37.9 million one-person households, 29% of all U.S. households in 2022. In 1960, single-person households represented only 13% of all households. These estimates are based on the 2022 Current Population Survey (CPS). Moving forward, the number of one-person households, people living alone, will increase at the rate of one million or more per year. People in households exclude people living in group quarters. This post examines patterns of people living alone with focus on people living alone age 65 year and over and distribution by small area geography.

While the CPS data provide a current snapshot of the number of people living alone, we have to use data from the American Community Survey to obtain data for smaller area geography like counties and census tracts.

Population Living Alone by Census Tract –Visual Data Analytics
The four graphics below show patterns of the population living alone by census tract. These views have been developed using the Visual Data Analytics (VDA GIS) tools with integrated demographics. Develop variations on these views using the VDA Web GIS using only a web browser.

Patterns of Population Living Alone by Tract

.. click graphic for larger view.

Patterns of Population 65 and Over Living Alone by Tract

.. click graphic for larger view.

Patterns of Population Living Alone by Tract — Houston Metro Area

Patterns of Population 65 and Over Living Alone by Tract — Houston Metro Area

Examine the Data in More Detail
As noted in this related New York Times story, nearly 26 million Americans 50 or older now live alone, up from 15 million in 2000. Older people have always been more likely than others to live by themselves makes up a bigger share of the population than at any time in the nation’s history. The trend has also been driven by deep changes in attitudes surrounding gender and marriage. People 50-plus today are more likely than earlier generations to be divorced, separated or never married. Similar ACS data as used to develop the graphics shown above are available by race/origin. These data are based on the ACS 2020 data; the same scope of data will be available from ACS 2021 to be released in December 2022.

About VDA GIS
VDA Web GIS is a decision-making information resource designed to help stakeholders create and apply insight. Use VDA Web GIS with only a Web browser; nothing to install; GIS experience not required. VDA Web GIS has been developed and is maintained by Warren Glimpse, ProximityOne (Alexandria, VA) and Takashi Hamilton, Tsukasa Consulting (Osaka, Japan).

About the Author
Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Join Warren on LinkedIn.

Examining Majority-Minority Population by Census Tract

.. a geographic area, such as a census tract or county, has a majority-minority (MM) population when the percent of the population less White, NonHispanic population is more than 50-percent or more of the total population. This section examines patterns of MM by 2020 census tract in the Houston, TX area using the VDA Web GIS (VDA). You can use VDA to examine patterns of MM by tract for areas of interest. All you need is a Web browser and Internet.

MM Tracts in the Houston Area
The following graphic shows patterns of the MM by tract in the Houston metro developed with VDA. The map shows tracts having more than 50% MM population with a red/salmon color. Tracts having 50% or less MM population are shown in blue/green/yellow. Harris County, TX has 1,115 2020 census tracts; 854 of these tracts have a MM population. See the partial list of those tracts by tract code and %MM in the table below the map. A query was used to determine the number of tracts meeting a criteria and sorted in descending order by %MM.

See this VDA Guide section for a step-by-step description
of how you can develop this or a similar view/analysis.

Percent Majority-Minority is a demographic attribute/measure for a geographic area. Like population density or percent population of a certain age, %MM can provide insights for stakeholders or analysts.

About VDA Web GIS
VDA Web GIS is a decision-making information resource designed to help stakeholders create and apply insight. VDA Web GIS has been developed and is maintained by Warren Glimpse, ProximityOne (Alexandria, VA) and Takashi Hamilton, Tsukasa Consulting (Osaka, Japan).

About the Author
Warren Glimpse is former senior Census Bureau statistician responsible for national scope statistical programs and innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Join Warren on LinkedIn.

Examining America’s 10 Largest Urban Areas

.. why it matters .. among other reasons, these 10 areas have 24% of the total U.S. population. Three have increased by more than 20% in the past 5 years.

More than 80-percent of America’s population is urban, but far more than 80-percent of America’s geography is rural. Census 2010 shows that America’s urban population increased by 12.1 percent from 2000 to 2010, compared to the national overall growth rate of 9.7 percent. Urban areas now account for 80.7 percent of the U.S. population, compared to 79.0 percent in 2000.

America’s 10 Largest Urbanized Areas
The following table shows the largest 10 Urbanized Areas (UAs) based on the American Community Survey 2011 and 2016 1-year estimates (ACS2016) and change over the period. UAs are sorted in descending order based on the 2016 population estimate. Note that Atlanta, Dallas and Houston moved up in rank.

Geodemographic relationships vary widely between the urbanized areas (UAs). Some, such as Miami, comprise most or all of the urban area within the corresponding metropolitan statistical area. Others, such as Philadelphia, are nested within a mix of adjacent urban areas interspersed with rural areas. Among other things, these different geodemographic structures reflect how planning, needs assessment and market development vary widely from associated metro-to-metro. These data show the importance and need to consider the urban/rural population distribution even in the largest metros.

Visual Analysis — Dallas Urbanized Area
The urbanized area (UA) of the corresponding metropolitan statistical area (MSA) generally occupies less than half of the MSA.
See the Dallas-Fort Worth-Arlington, TX MSA Situation and Outlook Report

… View developed using CV XE GIS.

Map Views for Each of the Largest 10 Urbanized Areas
Maps for each of the 10 largest UAs are shown at
http://proximityone.com/urbanareas_2016.htm.

Each graphic shows the designated urbanized area in a darker salmon color fill pattern, associated metropolitan statistical area with bold brown boundary, and other urban areas with a lighter shade of salmon fill color, counties black boundaries and yellow labels. The ACS 2016 UA population is shown as a white label under the UA name. The ACS 2016 estimates are the most recent data available and will update with 2017 estimates in late 2018.

More About Analyzing Urban/Rural Patterns and Characteristics
See the related section on America’s urban/rural population and geography:
http://proximityone.com/urbanpopulation.htm.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on L

Analyzing Block Group Demographics

.. tools & data to analyze sub-census tract households, education, income, housing, more … Block Groups, subdivisions of census tracts, are the smallest geographic areas for which “richer demographics” are developed by the Census Bureau. Block group demographic-economic estimates, based on Census 2010 geography, are annually updated beginning with American Community Survey (ACS) 2010. The latest ACS estimates for these 217,740 areas covering U.S. wall-to-wall are from ACS 2015. The ACS 2016 update will be released in December 2017.  See the related Web section for more detail about accessing and using block group geography and demographic-economic data.

Patterns of Economic Prosperity by Block Group
The following graphic shows patterns of median household income by block group in the Houston, TX area. Markers show block groups with 10 or more housing units having value of $2 million or more. Markers are labeled with the number of housing units having value of $2 million or more in that block group. Click graphic for larger view, more detail and legend color/data intervals. This map illustrates the geographic level of detail available using block group demographics and the relative ease to gain insights using geospatial data analytics tools.

– View developed using CV XE GIS and related GIS project.

Block Group Demographic-Economic Data & Shapefiles
… selection of key demographic-economic attributes; annual update
… subject matter categories include:
  • Total population>
  • Population by gender iterated by age
  • Population by race/origin
  • Households by type of household
  • Educational attainment by detailed category
  • Household Income by detailed category
  • Housing units by owner/renter occupancy
  • Housing units by units in structure
  • Housing units by detailed value intervals

See the related Web section for a detailed list of items.

Use these Data on Your Computer
Use the above U.S. national scope dataset with your own software or in ready-to-use GIS projects with the CV XE GIS software.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Relating ZIP Codes to City/Places

.. relating ZIP codes to cities .. 214 ZIP code areas intersect with New York city — what are these ZIP codes, their population and how many are completely within the city? What part of a ZIP code area of interest intersects with what city? Conversely, what ZIP code areas intersect with a city of interest? This section provides data and tools that can be used to answer these types of questions and gain insights into geospatial relationships. See more detailed information in the related full Web section.

The 2010 ZIP Code Tabulation Area (ZCTA) to City/Place relationship data provide a means to equivalence ZCTAs with Census 2010 cities/places. ZCTAs are geographic areas defined as sets of Census 2010 census blocks closely resembling USPS ZIP codes (lines, not areas). ZCTA boundaries are fixed for the intercensal period 2010 through 2020. Census 2010 vintage city/place areas are likewise defined as sets of Census 2010 census blocks. The ZCTA-City/place relationship data are developed through the use of the intersecting census block geography and associated Census 2010 Summary File 1 demographic data.

ZCTA-Place Relationships
The following graphic shows relationships between two selected ZCTAs (red boundaries) and related cities/places (blue fill pattern) in the Pima/Cochise County, AZ area. Relationships between these geographies are reviewed in examples shown below.

– View developed using CV XE GIS and related GIS project.

Using the ZCTA-Place Relationship Data
Two examples illustrating how to use the ZCTA-place relationship data are provided below. The examples are interconnected to the GIS project used to develop the map views, interactive table and data file described in this section. Example 1 describes how to use the data for a ZIP code area entirely located within one city/place. Example 2 describes how to use the data for a ZIP code area located in more than one city/place and area not located in any city/place.

ZCTA to Place Relationships: Example 1
In this example, ZCTA 85711, highlighted in red in the graphic shown below, falls wholly within place 77000, outlined in bold black below. As a result, there is only one corresponding record for ZCTA 85711 in the relationship file. The 2010 Census population for this relationship record is 41,251 (POPPT) which is equal to the 2010 Census population for ZCTA 85711 (ZPOP). See more details about this example.

ZCTA to Place Relationships: Example 2
In this example, ZCTA 85630, highlighted below in red in the graphic shown below, contains two places: all of place 62280 and part of place 05770, both are outlined in black below. As a result, there are two corresponding relationship records in the relationship file. For the first relationship record, the total 2010 Census population for ZCTA is 2,819 (ZPOP). See more details about this example.

Using the Interactive Table
Use the full interactive table to examine U.S. national scope ZCTA-city/place relationships. The following graphic illustrates how ZIP code can be displayed/examined for one city — Tucson, AZ. Each row summarizes characteristics of a ZIP code in Tucson. The last row in the graphic shows characteristics of ZIP code 85711 — the same ZIP code reviewed in Example 1 above.

Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Creating & Using Location Shapefiles

.. GIS tools and methods to develop and update location shapefiles .. location shapefiles are essential to most GIS applications. Location shapefiles, or point shapefiles, enable viewing/analyzing locations on a map and attributes of these locations such store or customer ID, street address, city, date updated, value, ZIP code and wide-ranging attributes about the location. This section reviews tools and methods to develop and use location shapefiles. See more detail about topics covered in this section in the related Web page.

Viewing/Analyzing Store Locations in the Dallas, TX Area
The following graphic illustrates how store locations can be shown in context of other geography and associated demographic-economic attributes. This view shows store locations (red markers) in context of Dallas city (blue cross-hatch pattern) and broader metro area. Markers shown in this view are based on a location shapefile created using steps described below. The identify tool is used to click on a location and show attributes in a mini-profile.

.. view developed with ProximityOne CV XE GIS and related GIS project.

View the locations contextually with thematic patterns by tract or other geography. Combine views of store, customer, agent, competitor and other location shapefiles.
The following view shows patterns of median household income by census tract.

.. view developed with ProximityOne CV XE GIS and related GIS project.

Development of location shapefiles often starts with a list of addresses. Locations are not always address-oriented; they might be geographically dispersed measurement or transaction locations — having no address assigned. In applications reviewed here, locations are organized as rows in a CSV file. Each CSV file contains like-structured attributes for each location. The example used in this section uses store locations located in the Dallas, TX area.

There are two basic methods used to create location shapefiles: 1) geocoding address-data contained in the source data file or 2) using the latitude-longitude of the location included in the source data file record. The focus here is on option 2 — using the latitude-longitude of the location already present in the source data file.

Creating a Location Shapefile
The process of creating a location shapefile uses the CV XE GIS Manage Location Shapefile feature. With CV running, the process is started with File>Tools>ManageLocationShapefile. The following form appears.

.. ManageLocationShapefile feature/operation in ProximityOne CV XE GIS.

CV XE GIS provides other ways to create location shapefiles:
• Tools>AddShapes>Points — click points on the map window canvas.
• Tools>FindAddress — creates a single point shapefile based on specified address.
• Tools>FindAddress (Batch) — creates a point shapefile based on specified file of address records.
See details in User Guide.

Steps to Create a Location Shapefile
The process of creating the shapefile “C:\cvxe\1\locations1pts.shp” can be viewed by clicking the Run button on the form (with CV running). Two input CSV structured files are required:
• data definition file
• source data file

There are two sets of illustration location input files included with the CV installer:
• locations1_dd.csv and locations1.csv (7 locations in Johnson County, KS)
• locations2_dd.csv and locations2.csv (252 locations in Dallas and Houston)
These files are located in the \1 (typically c:\cvxe\1) folder. The marker/location shapefile used in the map shown above was created using the lcoations2 input files.

Data Definition File
The Data Definition (DD) file is an ASCII/text file structured as a CSV file. It may created with any text editor. The DD file is specific to the source data file. But in the case of recurring source data files for different periods the same DD file might apply to many source data files. There are several rules and guidelines for development of the DD file:
• there is one line/record for each field in the source data file.
• each line/record must be structured in an exact form:
.. each line/record is comprised of exactly 4 elements separated by a comma:
.. 1 field name for subject matter item
– must consist of 1 to 10 characters and include no blanks or special characters
.. 2 field type: C for character, N for numeric
.. 3 field length: an integer specifying the maximum with of the field
.. 4 maximum number of decimals for field (value is 0 for character fields)
The DD File must include three final fields:
LATITUDE,n,12,6
LONGITUDE,n,12,6
GEOID,c,15,0
The structure of these three DD file records must be as shown above. The source data file, described below, must have the LATITUDE and LONGITUDE fields populated with accurate values. The GEOID field may populated with either an accurate value of placeholder value like 0.

Example. Data for each store for the default DD file name “C:\cvxe\1\locations1_dd.csv” include the following fields/attributes:
  NAME,C,45,0
STORE,c,15,0
ADDRESS,c,60,0
CITY,c,40,0
LATITUDE,n,12,6
LONGITUDE,n,12,6
GEOID,c,15,0

Optionally create a DD File using the Create DD File button on the form. Clicking this button will create a DD File containing attributes of the dBase file specified in the associated edit box. The DD File name is created from the dBase file name. If the dBase file name is “c:\cvxe\1\locations1pts.dbf”, the DD File will be named “c:\cvxe\1\locations1pts_dd.csv”.

About the GEOID
The GEOID is a 15 character code which defines the Census 2010 census block containing each location. The GEOID is generally assigned by the ManageLocationShapefile operation and is one of the important and distinctive features of this tool. The GEOID is used to uniquely determine, with the GIS application, any of the following: state, county, census tract, block group, or census block.

The GEOID, as used in this section, is the 15 character Census 2010 geocode for the census block. The GEOID value 481130002011012 (see in location profile in map at top of section) is structured as:
state FIPS code: 48 (2 chars)
county FIPS code: 113 (3 chars)
census tract code 000201 (6 chars)
census block code: 1012 (4 chars) (block group code: 1 — first of 4 characters)

About the Source Data File
The Source Data File is an ASCII/text file structured as a CSV file. It is typically developed by exporting/saving an Excel or dBase file in CSV structure. There are several rules and guidelines for development of the source data file:
• fields must be structured and arranged as defined in the DD File.
• character fields must not contain embedded commas.
• final items in record sequence must be:
.. LATITUDE – must have accurate decimal degree value; 6 digit precision suggested.
.. LONGITUDE- must have accurate decimal degree value; 6 digit precision suggested.
.. GEOID – this may be 0, not assigned or the accurately assigned GEOID value.
– optionally create/rewrite the GEOID used in the new shapefile.

Updates; Combining Vintages of Location Attributes
Location based data might update frequently, even daily. The recommended method to add, update and extend the scope of location-based data is to create new address shapefiles corresponding to different vintages or dates covered. The structure of the files must be the same so that they files can be used together or separately. Suppose there is one set of data covering year to date and a second set of data covering the following month. The ManagePointShapefile operation would be run once for each time period. Two shapefiles would be created. These shapefiles may be added to a GIS project and used separately or in combination to view/analyze patterns.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Examining Houston Metro Demographic-Economic Characteristics

.. tools & data to examine metro demographic-economic characteristics .. this Houston, TX metro focused section is one of several similar metro sections that will be covered in weeks ahead.  Each metro-focused section provides a summary of tools and data that can be used to view, rank, compare, analyze conditions and trends within the metro and this metro relative to other metros, regions and the Nation.  The ready-to-use GIS project/datasets provide the basis for extended data/geographic views and analysis immediately.  See more detail about topics covered in this related Web section.

Relating your data to demographic-economic characteristics and trends in a region involves more than information provided by a report or set of statistical tables. It is important to use your data to be able to identify areas of missed opportunity and competitive position. It is important to have a “10,000 foot” view as well as understanding individual neighborhoods and market/service areas. Geographic Information System (GIS) tools, with the right set of geographic, demographic and economic data can facilitate decision-making through the use of visual and tabular data analytics.

This section provides information on installing and using the Houston Metro Demographic-Economic GIS software and project/datasets. This same scope of data, tools and operation is available for any metro, state or combination.

10,000 Foot View
The following graphic shows patterns of median household income by census tract for the Houston metro area. This is the start-up view when using the GIS tools and data described below. The color patterns/intervals are shown in the highlighted layer in legend at left of map window. Use the GIS tools described below to develop thematic pattern maps for a range of data and criteria.

.. view developed using the CVGIS software.

See more about census tracts; see tracts main page.

Several additional views follow, developed using this same GIS project. These views illustrate different levels of geographic granularity and patterns of different subject matter.

Median Household Value by Block Group
See more about block groups; see block groups main page.

.. view developed using the CVGIS software.

Population/Housing Unit by Block
See more about census blocks; see census block main page.

.. view developed using the CVGIS software.

Zoom-in to Sugarland/Fort Bend County
See more about cities/places; see cities/places main page.
Access data for any city using interactive table.

.. view developed using the CVGIS software.

Further Zoom-in Showing Street/Road Detail
See more about streets.

.. view developed using the CVGIS software.

Additional Information
See the related Houston metro Situation & Outlook Report.

Using the GIS Software and Project/Datasets
(requires Windows computer with Internet connection)
1. Install the ProximityOne CV XE GIS
… run the CV XE GIS installer
… requires UserID; take all defaults during installation
2. Download the Houston Metro GIS project fileset
… requires UserID; unzip Houston Metro GIS project files to local new folder c:\p1data
3. Open the c:\p1data\us1_metros_houston.gis project
… after completing the above steps, click File>Open>Dialog
… open the file named c:\p1data\us1_metros_houston.gis
4. Done. The start-up view is shown above.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

115th Congressional Districts: Analysis and Insights

.. interpretative data analytics; tools, data & methods ..  this section is focused on 115th Congressional District geographic, demographic and economic patterns and characteristics. Use tools and data reviewed here to examine/analyze characteristics of one congressional district (CD) or a group of CDs based on state, party or other attribute. Use the GIS resources described here for general CD reference/pattern/analytical views, to examine current demographics and demographic change and for redistricting applications. See this related Web section for more details.

Examining the 115th Congressional Districts
• the 115th Congress runs from January 2017 through December 2018.
• FL, MN, NC, VA have redistricted since the 114th CD vintage;
  .. some 115th CDs have new boundaries compared the 114th CDs.
• view, rank, compare CDs using the interactive table.
  .. table uses ACS 2015 data for 115th CDs & include incumbent attributes.
  .. examine districts by party affiliation.
• use these more detailed 114th CD interactive tables
  .. data based on 2015 American Community Survey – ACS 2015.
  .. corresponding data for the 115th CDs from ACS 2016 available Sept 2017.
• use the new GIS project including 114th & 115th CDs described below.
  .. create CD thematic and reference maps;
  .. examine CDs in context of other geography & subject matter.
• join us in the April 25 Data Analytics Lab session

Visual Analysis of Congressional Districts
The following views 1) provide insights into patterns among the 115th CDs and 2) illustrate how 114th to 115th geographic change can be examined. Use CV XE GIS software with the GIS project to create and examine alternative views.

Patterns of Household Income by 115th Congressional District
The following graphic shows the patterns of the median household income by 115th Congressional District based on the American Community Survey 2015 1-year estimates (ACS2015). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Charlotte NC-SC Metro Area
  – with 114th/115th Congressional District 12

The following graphic shows North Carolina CD 12 with 114th boundary (blue) and 115th boundary (pale yellow) and Charlotte metro bold brown boundary. Click graphic for larger view with more detail. Expand browser window for best view.

.. view developed using the CVGIS software.

• View zoom-in to Charlotte city & Mecklenburg County.

115th Congressional District Interactive Table
Use the interactive table to examine characteristics of one congressional district (CD) or a group of CDs. The following graphic illustrates use of the interactive table. First, the party type was selected, Democratic incumbents in this example. Next, the income and educational attainment columns were selected. Third, the set of districts were sorted on median household income. It is quick and easy to determine that CA18 has the highest median household income and that the MHI is $1,139,900. Try using the table to examine districts of interest.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

School District Demographic Trends: 2010-2015

.. data and tools to examine how school districts of interest are changing … based on total population, the largest 10 school districts in 2015, all experienced an increase in total population over the period 2010-2015. Five of these districts had a decrease in school age population (ages 5-17 years). Four of these districts had a decrease in the number of related children in families ages 5-17 years. See characteristics of districts in this interactive table. See the related Web section for more details.

School Districts with 2015 Population 100,000 or More
More than 600 of the total 13,245 school districts have a total 2015 population of 100,000 or more (red markers).

– view developed with CVGIS software and related GIS project.

Using New 2015 Estimates Released December 2016
– for use in 2017 ESEA Title I Allocations
Analyze annual demographic data for each U.S. school district for the period 2010 through 2015. These data include the Federal official 2015 estimates available for all districts. Developed for use as inputs for the ESEA Title I allocation formula, the data have broader uses of interest to school district demographics stakeholders. Use the interactive table in this section to view, rank, compare, query demographic characteristics of districts of interest.

The annual estimates for each school district include:
• total population
• number of children ages 5 to 17
• number of related children ages 5 to 17 in families in poverty

Using Interactive Data Tools
Use the interactive table to view, rank, compare, query ZIP codes based on a selection of demographic measures. The following graphics illustrate how the table can be used. Click graphic for larger view.

Total Population — 10 districts with largest change 2010-15
– ranked descending on rightmost column

– click graphic for larger view.

School Age Population — 10 districts with largest change 2010-15
– ranked descending on rightmost column

– click graphic for larger view.

Related Children Ages 5-17 in Poverty
– 10 districts with largest change 2010-15
– ranked descending on rightmost column

– click graphic for larger view.

Try it yourself. Use the table to examine a set of districts on your selected criteria in for a state/area of interest.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.