Category Archives: TX Harris County

Relating ZIP Codes to City/Places

.. relating ZIP codes to cities .. 214 ZIP code areas intersect with New York city — what are these ZIP codes, their population and how many are completely within the city? What part of a ZIP code area of interest intersects with what city? Conversely, what ZIP code areas intersect with a city of interest? This section provides data and tools that can be used to answer these types of questions and gain insights into geospatial relationships. See more detailed information in the related full Web section.

The 2010 ZIP Code Tabulation Area (ZCTA) to City/Place relationship data provide a means to equivalence ZCTAs with Census 2010 cities/places. ZCTAs are geographic areas defined as sets of Census 2010 census blocks closely resembling USPS ZIP codes (lines, not areas). ZCTA boundaries are fixed for the intercensal period 2010 through 2020. Census 2010 vintage city/place areas are likewise defined as sets of Census 2010 census blocks. The ZCTA-City/place relationship data are developed through the use of the intersecting census block geography and associated Census 2010 Summary File 1 demographic data.

ZCTA-Place Relationships
The following graphic shows relationships between two selected ZCTAs (red boundaries) and related cities/places (blue fill pattern) in the Pima/Cochise County, AZ area. Relationships between these geographies are reviewed in examples shown below.

– View developed using CV XE GIS and related GIS project.

Using the ZCTA-Place Relationship Data
Two examples illustrating how to use the ZCTA-place relationship data are provided below. The examples are interconnected to the GIS project used to develop the map views, interactive table and data file described in this section. Example 1 describes how to use the data for a ZIP code area entirely located within one city/place. Example 2 describes how to use the data for a ZIP code area located in more than one city/place and area not located in any city/place.

ZCTA to Place Relationships: Example 1
In this example, ZCTA 85711, highlighted in red in the graphic shown below, falls wholly within place 77000, outlined in bold black below. As a result, there is only one corresponding record for ZCTA 85711 in the relationship file. The 2010 Census population for this relationship record is 41,251 (POPPT) which is equal to the 2010 Census population for ZCTA 85711 (ZPOP). See more details about this example.

ZCTA to Place Relationships: Example 2
In this example, ZCTA 85630, highlighted below in red in the graphic shown below, contains two places: all of place 62280 and part of place 05770, both are outlined in black below. As a result, there are two corresponding relationship records in the relationship file. For the first relationship record, the total 2010 Census population for ZCTA is 2,819 (ZPOP). See more details about this example.

Using the Interactive Table
Use the full interactive table to examine U.S. national scope ZCTA-city/place relationships. The following graphic illustrates how ZIP code can be displayed/examined for one city — Tucson, AZ. Each row summarizes characteristics of a ZIP code in Tucson. The last row in the graphic shows characteristics of ZIP code 85711 — the same ZIP code reviewed in Example 1 above.

Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Life Expectancy Change by County, 1980-2014

.. data and tools to examine changing life expectancy by county. Use the interactive table to examine life expectancy characteristics and related demographics for counties and regions of interest. Use the related GIS project and datasets to examine life expectancy contextually with other geography & subject matter. See details below. These data and tools are part of the ProximityOne health data analytics resources.

Life expectancy is rising overall in the United States, but in some areas, death rates are going in the other direction. These geographic disparities are widening.

Life Expectancy Change by County, 1980-2014
The following graphic shows patterns of the change in life expectancy change from 1980 to 2014. Click graphic for larger view. Expand browser window for best quality view.

– View developed using CV XE GIS and related GIS project.
– see below in this section about using this GIS project.

Life expectancy is greatest in the high country of central Colorado, but in many pockets of the U.S., life expectancy is more than 20 years lower. These data are based on research and analysis by the University of Washington Institute for Health Metrics and Evaluation.

Examining life expectancy by county allows for tracking geographic disparities over time and assessing factors related to these disparities. This information is potentially useful for policymakers, clinicians, and researchers seeking to reduce disparities and increase longevity.

Life Expectancy Change by County, 1980-2014 — drill-down view
— South Central Region
The following graphic shows patterns of the change in life expectancy change from 1980 to 2014. Click graphic for larger view. Expand browser window for best quality view. The larger graphic shows counties labeled with change in life expectancy from 1980-2014.

– View developed using CV XE GIS and related GIS project.
– see below in this section about using this GIS project.

Additional Views — use the GIS project to create your own views
.. click link to view
Alaska
Hawaii
Minneapolis metro

Using the Interactive Table
Use the interactive table to view, rank, compare life expectancy characteristics. This graphic shows California counties ranked on life expectancy change 1980-2014 in descending order. Select states or metros of interest. Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Examining Houston Metro Demographic-Economic Characteristics

.. tools & data to examine metro demographic-economic characteristics .. this Houston, TX metro focused section is one of several similar metro sections that will be covered in weeks ahead.  Each metro-focused section provides a summary of tools and data that can be used to view, rank, compare, analyze conditions and trends within the metro and this metro relative to other metros, regions and the Nation.  The ready-to-use GIS project/datasets provide the basis for extended data/geographic views and analysis immediately.  See more detail about topics covered in this related Web section.

Relating your data to demographic-economic characteristics and trends in a region involves more than information provided by a report or set of statistical tables. It is important to use your data to be able to identify areas of missed opportunity and competitive position. It is important to have a “10,000 foot” view as well as understanding individual neighborhoods and market/service areas. Geographic Information System (GIS) tools, with the right set of geographic, demographic and economic data can facilitate decision-making through the use of visual and tabular data analytics.

This section provides information on installing and using the Houston Metro Demographic-Economic GIS software and project/datasets. This same scope of data, tools and operation is available for any metro, state or combination.

10,000 Foot View
The following graphic shows patterns of median household income by census tract for the Houston metro area. This is the start-up view when using the GIS tools and data described below. The color patterns/intervals are shown in the highlighted layer in legend at left of map window. Use the GIS tools described below to develop thematic pattern maps for a range of data and criteria.

.. view developed using the CVGIS software.

See more about census tracts; see tracts main page.

Several additional views follow, developed using this same GIS project. These views illustrate different levels of geographic granularity and patterns of different subject matter.

Median Household Value by Block Group
See more about block groups; see block groups main page.

.. view developed using the CVGIS software.

Population/Housing Unit by Block
See more about census blocks; see census block main page.

.. view developed using the CVGIS software.

Zoom-in to Sugarland/Fort Bend County
See more about cities/places; see cities/places main page.
Access data for any city using interactive table.

.. view developed using the CVGIS software.

Further Zoom-in Showing Street/Road Detail
See more about streets.

.. view developed using the CVGIS software.

Additional Information
See the related Houston metro Situation & Outlook Report.

Using the GIS Software and Project/Datasets
(requires Windows computer with Internet connection)
1. Install the ProximityOne CV XE GIS
… run the CV XE GIS installer
… requires UserID; take all defaults during installation
2. Download the Houston Metro GIS project fileset
… requires UserID; unzip Houston Metro GIS project files to local new folder c:\p1data
3. Open the c:\p1data\us1_metros_houston.gis project
… after completing the above steps, click File>Open>Dialog
… open the file named c:\p1data\us1_metros_houston.gis
4. Done. The start-up view is shown above.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

County 5-Year Trends: Income & Income Inequality

.. tools and data to examine how the U.S. by county household income and income inequality are changing … how is household income changing in counties of interest? What are the trends; what is causing the change? What are the characteristics of income inequality and how is it changing? How might this change impact your living environment and business?

This section provides access to tools and data to examine U.S. by county measures of household income and income inequality between two 5-year periods (2006-10 and 2011-2015). These data can provide insights into how household income and income inequality are changing for one county, a group of counties and the U.S. overall. Use the interactive table to view median household income and measures income inequality for all counties. See more detail about these topics here. Measures of income inequality can be estimates/examined using the Gini Index.

The Gini Index & Measuring Income Inequality
The Gini Index is a dimensionless statistic that can be used as a measure of income inequality. The Gini index varies from 0 to 1, with a 0 indicating perfect equality, where there is a proportional distribution of income. A Gini index of 1 indicates perfect inequality, where one household has all the income and all others have no income.

At the national level, the 2015 Gini index for U.S. was 0.482 (based on 2015 ACS 1-year estimates) was significantly higher than in the 2014 ACS Index of 0.480 (based on 2014 ACS 1-year estimates). This increase suggests that income inequality increased across the country.

Examining Household Income & Income Inequality Patterns & Change
The following two graphics show patterns of the GIni Index by county. The first view is based on the American Community Survey (ACS) 2010 5-year estimates and the second is based on the ACS 2015 5-year estimates. The ACS 2010 estimates are based on survey respondents during the period 2006 through 2010. The ACS 2015 estimates are based on survey respondents during the period 2011 through 2015. One view compared with the other show how patterns of income inequality has changed at the county/regional level between these two 5-year periods.

Following these Income Inequality views are two corresponding views of median household income; using data from ACS 2010 and ACS 2015. Use CV XE GIS software with the GIS project to create and examine alternative views.

Patterns of Income Inequality by County; ACS 2010
The following graphic shows the patterns of the Gini Index by county based on the American Community Survey 2010 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Income Inequality by County; ACS 2015
The following graphic shows the patterns of the Gini Index by county based on the American Community Survey 2015 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Economic Prosperity by County; ACS 2010
The following graphic shows the patterns of median household income ($MHI) by county based on the American Community Survey 2010 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Economic Prosperity by County; ACS 2015
The following graphic shows the patterns of median household income ($MHI) by county based on the American Community Survey 2015 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Examining County Migration: 2010-2016

.. tools and data to examine U.S. by county migration 2010 to 2016 … is the population moving away or into your counties of interest? What are the trends; what is causing the change? What are the characteristics of the population moving in and out? How might this impact your living environment and business?

The total net international migration among all counties 7/1/2010 – 7/1/2016 was 5,641,260, an annual average of 940,432. The sum of net domestic migration among counties is zero by definition, but domestic migration among counties varies radically by size and direction. This section is focused on U.S. by county migration from 2010 to 2016. Migration is one component of change used to develop population estimates. See more about county population estimates and components of change in this related Web section.

Largest 10 Counties Based on 2016 Population
This table shows how domestic migration varies widely among the most populated counties. Use this interactive table to develop your own custom views for counties of interest.

Patterns of Population Change by County, 2010-2016
– the role and impact of migration
The following graphic shows how counties have gained population (blue and green) and lost population (orange and red) during the period 2010 to 2016. Click graphic for larger view; expand browser window for best quality view.

.. view developed with ProximityOne CV XE GIS and related GIS project.

Examining Population Components of Change
– net migration and natural change
Population change can be examined in terms of components of change. There are three components of change: births, deaths, and migration. The change in the population from births and deaths is often combined and referred to as natural increase or natural change. Populations grow or shrink depending on if they gain people faster than they lose them. Examining a county’s unique combination of natural change and migration provides insights into why its population is changing and how quickly the change is occurring.

Using the Interactive Table
– examining migration by county
Use the interactive table to examine characters of counties by states, metro or peer group. The following graphic illustrates use of the interactive table to view net migration for the Houston metro by county. The net migration button was used to select only the net migration columns, FindCBSA button used to show only counties in this metro and the final step was to sort the resulting table on 2016 population. Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Tools to Analyze County Demographic-Economic Characteristics

.. demographic-economic characteristics of counties are essential for business development, market analysis, planning, economic development, program management and general awareness of patterns and trends. This section provides access to data and tools to examine these data for all counties in the U.S. This annual update includes geographic area characteristics based on ACS 2015 data.  The tools/data are organized into four related sections summarized below.

1. General Demographics
View interactive table at http://proximityone.com/us155dp1.htm
Patterns of School Age Population by County
Use GIS tools to visually examine county general demographics as illustrated below. The following view shows patterns of percent population ages 5 to 17 years of age by county — item D001-D004-D018 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

2. Social Characteristics
View interactive table at http://proximityone.com/us155dp2.htm 
Patterns of Educational Attainment by County
– percent college graduate
Use GIS tools to visually examine county social characteristics as illustrated below. The following view shows patterns of percent college graduate by county — item S067 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

3. Economic Characteristics
View interactive table at http://proximityone.com/us155dp3.htm 
Patterns of Median Household Income by County
Use GIS tools to visually examine county economic characteristics as illustrated below. The following view shows patterns median household income by county — item E062 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

4. Housing Characteristics
View interactive table at http://proximityone.com/us155dp4.htm 
Patterns of Median Housing Value by County
Use GIS tools to visually examine county housing characteristics as illustrated below. The following view shows patterns median housing value by county — item E062 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Regional Economic Information System: Annual Updates

.. which counties are experiencing the fastest economic growth? by what economic component? what does this look like on a per capita level?

.. access & analyze economic characteristics and patterns by county and state .. annual time series 1969 through 2015 with projections.  Personal income is the income available to persons for consumption expenditures, taxes, interest payments, transfer payments to governments and the rest of the world, or for saving. Use the interactive table to examine characteristics of counties and regions of interest. The table provides access to 31 personal income related summary measures. These data are a selection of a broader set of annual time series data from the Regional Economic Information System (REIS). REIS is a part of the ProximityOne State & Regional Income & Product Accounts (SRIPA) and Situation & Outlook (S&O) featuring current (2016) estimates and demographic-economic projections. Go to table.

Visual Analysis of Per Capita Personal Income Patterns
The following map shows the Houston metro (view profile) with bold brown boundary. Counties are labeled with county name and 2014 per capita personal income.

Click graphic for larger view. View developed with CV XE GIS software.

Per Capita Personal Income Change 2008-2014 by County
.. relative to U.S 2008-2014 change

Click graphic for larger view. View developed with CV XE GIS software.

Interactive Analysis – County or State Profiles
The following graphic illustrate use of the interactive table to view an economic profile for Harris County, TX. Use the table to examine characteristics of any county or state. Click graphic for larger view.

Interactive Analysis
– comparing per capita personal income across counties
The next graphics illustrates use of the interactive table to rank/compare per capita personal income across counties. Rank/compare states. Choose any of the economic profile items. Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.