Tag Archives: Income patterns

Analyzing Block Group Demographics

.. tools & data to analyze sub-census tract households, education, income, housing, more … Block Groups, subdivisions of census tracts, are the smallest geographic areas for which “richer demographics” are developed by the Census Bureau. Block group demographic-economic estimates, based on Census 2010 geography, are annually updated beginning with American Community Survey (ACS) 2010. The latest ACS estimates for these 217,740 areas covering U.S. wall-to-wall are from ACS 2015. The ACS 2016¬†update will be released in December 2017. ¬†See the related Web section for more detail about accessing and using block group geography and demographic-economic data.

Patterns of Economic Prosperity by Block Group
The following graphic shows patterns of median household income by block group in the Houston, TX area. Markers show block groups with 10 or more housing units having value of $2 million or more. Markers are labeled with the number of housing units having value of $2 million or more in that block group. Click graphic for larger view, more detail and legend color/data intervals. This map illustrates the geographic level of detail available using block group demographics and the relative ease to gain insights using geospatial data analytics tools.

– View developed using CV XE GIS and related GIS project.

Block Group Demographic-Economic Data & Shapefiles
… selection of key demographic-economic attributes; annual update
… subject matter categories include:
  • Total population>
  • Population by gender iterated by age
  • Population by race/origin
  • Households by type of household
  • Educational attainment by detailed category
  • Household Income by detailed category
  • Housing units by owner/renter occupancy
  • Housing units by units in structure
  • Housing units by detailed value intervals

See the related Web section for a detailed list of items.

Use these Data on Your Computer
Use the above U.S. national scope dataset with your own software or in ready-to-use GIS projects with the CV XE GIS software.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

County 5-Year Trends: Income & Income Inequality

.. tools and data to examine how the U.S. by county household income and income inequality are changing … how is household income changing in counties of interest? What are the trends; what is causing the change? What are the characteristics of income inequality and how is it changing? How might this change impact your living environment and business?

This section provides access to tools and data to examine U.S. by county measures of household income and income inequality between two 5-year periods (2006-10 and 2011-2015). These data can provide insights into how household income and income inequality are changing for one county, a group of counties and the U.S. overall. Use the interactive table to view median household income and measures income inequality for all counties. See more detail about these topics here. Measures of income inequality can be estimates/examined using the Gini Index.

The Gini Index & Measuring Income Inequality
The Gini Index is a dimensionless statistic that can be used as a measure of income inequality. The Gini index varies from 0 to 1, with a 0 indicating perfect equality, where there is a proportional distribution of income. A Gini index of 1 indicates perfect inequality, where one household has all the income and all others have no income.

At the national level, the 2015 Gini index for U.S. was 0.482 (based on 2015 ACS 1-year estimates) was significantly higher than in the 2014 ACS Index of 0.480 (based on 2014 ACS 1-year estimates). This increase suggests that income inequality increased across the country.

Examining Household Income & Income Inequality Patterns & Change
The following two graphics show patterns of the GIni Index by county. The first view is based on the American Community Survey (ACS) 2010 5-year estimates and the second is based on the ACS 2015 5-year estimates. The ACS 2010 estimates are based on survey respondents during the period 2006 through 2010. The ACS 2015 estimates are based on survey respondents during the period 2011 through 2015. One view compared with the other show how patterns of income inequality has changed at the county/regional level between these two 5-year periods.

Following these Income Inequality views are two corresponding views of median household income; using data from ACS 2010 and ACS 2015. Use CV XE GIS software with the GIS project to create and examine alternative views.

Patterns of Income Inequality by County; ACS 2010
The following graphic shows the patterns of the Gini Index by county based on the American Community Survey 2010 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Income Inequality by County; ACS 2015
The following graphic shows the patterns of the Gini Index by county based on the American Community Survey 2015 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Economic Prosperity by County; ACS 2010
The following graphic shows the patterns of median household income ($MHI) by county based on the American Community Survey 2010 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Economic Prosperity by County; ACS 2015
The following graphic shows the patterns of median household income ($MHI) by county based on the American Community Survey 2015 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.