Tag Archives: Health

Analyzing Patterns of COVID-19

.. as COVID-19 impacts our demographics, economy and way of life, we look for answers about where we are and what lies ahead.  Here we review data on COVID-19 incidence and tools to analyze those data. In the coming days, weeks, we plan to augment these tools and data. See more below.  See related Web section for more detail.

Use new resources to examine/analyze patterns of COVID-19 incidence in context of related demographic-economic characteristics. Resources include the narrative/interpretative portion, interactive table and GIS tools and project/files. Data and tools are updated daily. There is no fee to use any of these resources.

COVID-19 Incidence by County in the Atlanta Metro Area
The following graphic shows patterns of COVID-19 incidence (number of cases per 1,000 population) by county. See color patterns in the inset legend. This view shows counties labeled with name and number of confirmed COVID-19 cases. Use the GIS project described below to create variations of this view and develop similar views for any metro.

.. view developed with ProximityOne CV XE GIS and related GIS project.

The GIS resources and interactive table below makes use of the COVID-19 confirmed cases data updated daily by the New York Times. See more about the New York Times U.S. tracking page.

COVID-19 Incidence — U.S. by County
Similar to the above view, the following graphic shows patterns of COVID-19 incidence (number of cases per 1,000 population) by county for the U.S. See color patterns in the inset legend. This view shows counties labeled with name and number of confirmed COVID-19 cases. Use the GIS project described below to create variations of this view and develop similar views for any metro. Click graphic for larger, more detailed view. Expand browser window for best quality view.

.. view developed with ProximityOne CV XE GIS and related GIS project.

Using GIS Tools & Resources
Use the Geographic Information System (GIS) CV XE GIS software and GIS project to view maps and geospatially analyze patterns COVID-19 cases in context of related demographic-economic data. The GIS project automatically opens with the following view:

.. see details about using the mapping/GIS resources.
.. create map views for your areas of interest.

COVID-19 Confirmed Cases by County Interactive Table
Use the interactive table to view, rank, query compare patterns of COVID-19 cases. See related demographic-economic interactive tables.

The following static graphic illustrates use of the table to view daily patterns of COVID-19 cases in Cobb County, GA.

Use the interactive table to examine counties of interest.

Situation & Outlook Web Sessions
Join me in a Situation & Outlook Web Session where we discuss topics relating to measuring and interpreting the where, what, when, how and how much demographic-economic change is occurring and it’s impact.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Personal Consumption Expenditures by Type & State

.. using Personal Consumption Expenditures (PCE) measures to monitor/examine the strength of a regional economy and consumer buying trends in that region and compare among regions … PCE estimates released in October 2019, show that state personal consumption expenditures increased 5.1 percent in 2018, an acceleration from the 4.4 percent increase in 2017. The percent change in PCE across all states ranged from 7.3 percent in Utah to 3.6 percent in West Virginia.

In 2018, across all states and D.C., per capita PCE was $42,757. Per capita PCE by state ranged from a high of $55,095 (MA) to a low of $31,083 (MS). Per capita PCE in D.C. $63,151. Use the interactive table to example per capita and total PCE by state for 24 categories annually 2010 to 2018.

Per Capita Personal Consumption Expenditures by Category; U.S. 2018
— how does your situation and areas of interest compare to U.S. overall?
— view, sort, query by state and year in the interactive table

Goods and services purchased by people are personal consumption expenditures (PCE). These data provide insights into the strength of a state economy and consumer buying trends. As a major component of GDP, PCE growth has recently accounted for much of the GDP growth. The data reviewed in this section are developed by the Bureau of Economic Analysis (BEA, released each October). ProximityOne develops regional PCE estimates by metro and county. More about PCE.

See related sections:
• State Real Median Household Income
• State Annual Gross Domestic Product by Industry

Per Capita Consumption Expenditures by State, 2018
The following graphic shows patterns of 2018 per capita personal income expenditures (PCE). Intervals show distribution in quintiles, equal number of states per interval. The 2018 U.S. per capita PCE was $42,757. Use CV XE GIS project to examine PCE by types, per cpaita vs total, different years and change. Integrate additional subject matter and types of geography. Click graphic for larger view with details. Expand browser window for bets quality view.

– view developed with ProximityOne CV XE GIS and related GIS project & datasets.

Using the Interactive Table
— which areas have the highest health care expenditures?
Use the interactive table to examine personal consumption expenditures by type and state annually for the period 2010-2018. The following view illustrates use of the table. This view shows use a query to examine only health care expenditures. The table was then sorted in descending order to show the areas with the highest per capita health care expenditures in 2018.

Try using the interactive table to existing states or categories of interest.

Demographic-Economic Analytics Web Sessions
Join me in a Demographics Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Employment by Occupation by Census Tract; 5-Year Trends

.. data and tools to examine patterns of employment by occupation by census tract and 5-year change .. the U.S. civilian employed population increased from 142.9 million in 2012 to 155.1 million in 2017, an increase of 12.1 million (8.5%) based on the American Community Survey (ACS) 1-year estimates. See this table to see how the employed population were distributed by occupation in 2012, 2017 and the 5-year change. How did your neighborhoods or market/service areas of interest change over the past 5 years? How will occupational employment patterns by tract/neighborhood change between now and 2023?

Patterns of Percent Employed in Health Occupations by Census Tract
The following graphic shows patterns of the employed population in health occupations as a percent of total civilian employed population ages 16 and over in the Minneapolis-St. Paul metro. This view uses the occupational category MBSA40 Healthcare practitioners and technical listed in scroll section below. Tracts with blue or green pattern exceed the national average as shown in national table. Click graphic for larger view, more detail (shows schools layer) and legend color/data intervals. This map illustrates the geographic level of detail available using census tract demographics and the relative ease to gain insights using geospatial data analytics tools. View related graphic showing tract with the largest employment in the “Healthcare practitioners and technical” occupational group among all tracts.

– View developed using CV XE GIS and related GIS project.

Drill-down to Census Tract Level
Examining patterns of employment by occupation, for the same scope of subject matter, at the sub-county level can provide more insights. What is the size of the employment for a selected occupation in a neighborhood or market/service area of interest? How has the size of an occupational group by census tract changed over the past five years? How do these patterns rank/compare by tract in a particular state, metro or county? Data on employment by occupational category from the Federal statistical system on a U.S. national scale for counties, cities and census tracts are only available from the American Community Survey (ACS).

Use tools, resources and methods described here to access, integrate and analyze employment by occupation for the U.S. by census tract. Use the interactive table to view, query, rank, compare census tract occupational characteristics, patterns and trends. Data are based on the American Community Survey (ACS) 2017 5-year estimates.

Related sections with census tract interactive tables:
– General Demographics .. Social .. Economic .. Housing 

Current Estimates & Projections
ACS tract/small area estimates lag by four years or more between the current year and reference year. ACS does not produce current year annual estimates but estimates based on a 5-year period. The 2017 ACS estimates are centric to 2015. Use the ProximityOne annual tract estimates and projections 2010 through 2023 for current year (e.g., characteristics as of 2018) estimates and anticipated change 5 years ahead.

Using the Interactive Table
An example of using the interactive table to view, query, rank, compare census tract occupational characteristics, patterns and trends is shown by the graphic presented below. The table shows 6 columns of employment data for all tracts in Harris County, TX. The table is ranked on the ACS 2017 health occupations employment (MBSA40) column. Tract 48-201-312600 had largest ACS 2017 health employment of 1,078 among all tracts in the county. Compare to 2012 patterns. Use settings below table to develop a similar view your geography and occupations of interest.

Occupational Categories
The interactive table includes occupational categories listed below.
Total population
Total Civilian employed population 16 years and over
MBSA00 . Management, business, science, and arts
MBSA10 . . Management, business, and financial
MBSA11 . . . Management
MNSA12 . . . Business and financial operations
MBSA20 . . Computer, engineering, and science
MBSA21 . . . Computer and mathematical
MBSA22 . . . Architecture and engineering
MBSA23 . . . Life, physical, and social science
MBSA30 .. Education, legal, community service, arts, and media
MBSA31 … Community and social service
MBSA32 … Legal
MBSA34 … Education, training, and library
MBSA35 … Arts, design, entertainment, sports, and media
MBSA40 .. Healthcare practitioners and technical
MBSA41 … Health diagnosing & treating practitioners & other tech
MBSA42 … Health technologists and technicians
SVC00 . Service
SVC10 . . Healthcare support
SVC20 . . Protective service
SVC21 . . . Fire fighting/prevention & other protective services
SVC22 . . . Law enforcement workers including supervisors
SVC30 . . Food preparation and serving related
SVC40 . . Building and grounds cleaning and maintenance
SVC50 . . Personal care and service
SOF00 . Sales and office
SOF10 . . Sales and related
SOF20 . . Office and administrative support
NRC00 . Natural resources, construction, and maintenance
NRC10 . . Farming, fishing, and forestry
NRC20 . . Construction and extraction
NRC30 . . Installation, maintenance, and repair
PTM00 . Production, transportation, and material moving
PTM10 . . Transportation
PTM20 . . Material moving

Data Analytics Web Sessions
See these applications live/demoed. Run the applications on your own computer.
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Metropolitan Area New Residential Construction in 2017

.. understanding the housing situation; examining housing supply and demand market conditions; assessing trends for metropolitan areas … and how metros of interest are changing .. tools and data to examine patterns and change.

During 2017, cities and counties in permit issuing places authorized the construction of 1,281,977 new privately owned housing units with a total valuation of $258.5 billion. This was 1.4 percent above the annual estimate of 1,264,051 housing units and is a 6.2 percent increase from the 2016 total of 1,206,642.

Patterns of New Residential Construction by Metropolitan Area
The following graphic shows the 20 largest metropolitan statistical areas (MSAs) based on the number of new residential housing units authorized in 2017. Click graphic for larger view showing MSAs labeled with rank and name.

View created with CV XE GIS. Click graphic for larger view.

Residential Construction Data Analytics — Using Tools & Data
Visit the related Web section to access interactive table and GIS/GeoSpatial analytical tools and data.

Data Analytics Web Sessions
Join me in a Data Analytics Web Session, every Tuesday, where we review access to and use of data, tools and methods relating to GeoStatistical Data Analytics Learning. We review current topical issues and data — and how you can access/use tools/data to meet your needs/interests.

About the Author
Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.
 

Examining America’s Cities: Demographic-Economic Updates

.. of the approximate 29,500 U.S. cities and places — geographic areas of population concentration — 301 had an ACS 2016 5-year estimated population of 100,000 or more. The median household income among these places, one measure of economic prosperity, ranged from $26,249 (Detroit, MI) to $117,642 (Frisco, TX).

What are the demographic-economic characteristics of your cities/places of interest? How do these compare to peer groups or a metro/state of interest. Learn more using the new city/place demographic interactive tables. Its about more than economic prosperity — using these data provide otherwise unknowable attributes about the demographic, social, economic and housing characteristics of individual cities/places.

Visual Analysis of City/Place Population Dynamics
The following view shows patterns of population percent change by city in the Charlotte, NC/SC metro area.

… view developed using the CV XE GIS software.
… more about above view in City/Place Economic Characteristics section.

Patterns of Economic Prosperity ($MHI) by City/Place
— Northern Virginia, DC, Maryland; part of the Washington, DC metro.

… view developed using the CV XE GIS software.
… click graphic for larger view with places labeled by name and $MHI.

Interactive Tables — new January 2018
Use these interactive tables to get answers, build insights:
• General Demographics
• Social Characteristics
• Economic Characteristics — used to develop data at top of section
• Housing Characteristics
Related:
• City/Place GeoDemographics Main Section
• Annual City/Place Population Estimates & Trends
• Similar ACS tables: Census Tracts | ZIP Codes | State, Metro & County

More About City/Place GeoStatistical Data and Data Analytics
The term “places” as used here refers to incorporated places and Census Designated Places (CDPs). Incorporated places are political areas having certain governmental powers designated by the corresponding state. Unincorporated places, or Census Designated Places (CDPs), are statistical areas having no official standing and no governmental powers but are recognized as being areas of population concentration. Wide-ranging demographic-economic estimates are developed annually for the approximate 29,500 incorporated cities and CDPs based on the American Community Survey 5-year estimates. See more about the ACS 2016 5-year estimates.

Many cities have planning and data development operations that develop important local data including tax parcel data, building permit data, transportation and infrastructure data … bit generally not the data reviewed in this section. Many cities have no planning department to develop, organize and analyze geographic, demographic, economic data … making these data even more essential.

Increasingly in core sections of metropolitan areas, as shown in the above graphics, a large number of cities/places are contiguous. Many retain their own character evolving over many years. Having the detailed ACS demographic-economic data makes it possible to compare places side by side. Use the same data for related drill down geography such as census tracts and block groups to examine neighborhoods and market areas.

Data Analytics Web Sessions
Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Life Expectancy Change by County, 1980-2014

.. data and tools to examine changing life expectancy by county. Use the interactive table to examine life expectancy characteristics and related demographics for counties and regions of interest. Use the related GIS project and datasets to examine life expectancy contextually with other geography & subject matter. See details below. These data and tools are part of the ProximityOne health data analytics resources.

Life expectancy is rising overall in the United States, but in some areas, death rates are going in the other direction. These geographic disparities are widening.

Life Expectancy Change by County, 1980-2014
The following graphic shows patterns of the change in life expectancy change from 1980 to 2014. Click graphic for larger view. Expand browser window for best quality view.

– View developed using CV XE GIS and related GIS project.
– see below in this section about using this GIS project.

Life expectancy is greatest in the high country of central Colorado, but in many pockets of the U.S., life expectancy is more than 20 years lower. These data are based on research and analysis by the University of Washington Institute for Health Metrics and Evaluation.

Examining life expectancy by county allows for tracking geographic disparities over time and assessing factors related to these disparities. This information is potentially useful for policymakers, clinicians, and researchers seeking to reduce disparities and increase longevity.

Life Expectancy Change by County, 1980-2014 — drill-down view
— South Central Region
The following graphic shows patterns of the change in life expectancy change from 1980 to 2014. Click graphic for larger view. Expand browser window for best quality view. The larger graphic shows counties labeled with change in life expectancy from 1980-2014.

– View developed using CV XE GIS and related GIS project.
– see below in this section about using this GIS project.

Additional Views — use the GIS project to create your own views
.. click link to view
Alaska
Hawaii
Minneapolis metro

Using the Interactive Table
Use the interactive table to view, rank, compare life expectancy characteristics. This graphic shows California counties ranked on life expectancy change 1980-2014 in descending order. Select states or metros of interest. Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Examining Health Characteristics by Census Tract

.. new data, new ways to examine health characteristics at the city and census tract/subcounty level.  For example, among the 500 largest U.S. cities in 2014, the incidence of high blood pressure ranged from 22.5% (Longmont, CO) to 47.8% (Gary, IN). Use the interactive table to view, rank, compare this and other new wide-ranging health statistics for the 500 largest U.S. cities and associated census tracts. See the related Web section for more detail.

At the census tract/neighborhood level, 937 tracts have more than 10% of the population ages 18 years and over with coronary heart disease. What are characteristics of health-related factors in your city, neighborhood and census tracts of interest? Use tools reviewed in this section to access/analyze a wide range of health-related characteristics (see items list below) — not available at the city or census tract level before.

Patterns of High Blood Pressure: Honolulu, HI by Census Tract
This graphic illustrates visual analysis and analytical potential for tracts in cities covered.

– Click graphic for larger view with high blood pressure %population label
– View developed with CV XE GIS software and related GIS project/fileset.

Accsss/analyze these data for approximately 28,000 tracts (of a total approximate 74,000) on topics including chronic disease risk factors, health outcomes and clinical preventive service use for the largest 500 cities in the U.S. These small area data enable stakeholders in cities, local health departments, neighborhoods and study areas to better understand the characteristics and geographic distribution of health-related measures and how they might impact health-related programs and other demographic-economic issues.

Scope of 500 Cities
The following graphic shows the 500 cities (green areas) included in project. Data for these cities and intersecting tracts are available. Click graphic for larger view providing county visibility and city name labels. Expand browser to full window for best quality view.

– View developed with CV XE GIS software and related GIS project/fileset.

The 500 Cities data have been developed as a part of the CDC 500 Cities project, a collaboration between the Centers for Disease Control (CDC), the Robert Wood Johnson Foundation and the CDC Foundation. These data are being integrated into the Situation & Outlook (S&O) database and included in the S&O metro reports. Examine health-related characteristics of metro cities and drill-down areas in combination with other demographic-economic measures.

Analytical Potential
These data provide only the health characteristics attributes. They are a small, but important, subset of a larger set of key health metrics. These data are estimates subject to errors of estimation and provide a snapshot view of one point in time.

The value of these data can be leveraged by linking them with other demographic-economic data from the American Community Survey (ACS 2015) tract and city data. Integrate and analyze these data with related data and alternative geography. See related health data analytics section.

Patterns of Heart Disease; Charlotte, NC-SC Area by Tract
This graphic illustrates coronary heart disease patterns by census tract for cities included in the database. Gray areas are census tracts not included in the 500 cities database. Click graphic for larger view.
– View developed with CV XE GIS software and related GIS project/fileset.

Using the Interactive Table
Use the interactive table to view, rank, compare, query these health measures by city. The following graphic illustrates how the table can be used to examine patterns of Texas cities. Table operations are used to selected Texas cities then rank the cities based on the “Access” column — “Current lack of health insurance among adults aged 18-64 Years”.

Try it yourself. Use the table to examine a set of cities in a state of interest.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.