Category Archives: CA Sunnyvale

America’s Cities: Demographic-Economic Characteristics Annual Update

.. tools and data to interactively examine demographic-economic characteristics of America’s 29,321 cities/places .. understanding demographic-economic characteristics of cities and places is essential for business development, market analysis, planning, economic development, program management and general awareness of patterns and trends. This section provides access to data and tools to examine characteristics of all cities/places in the U.S. This annual update includes data for 29,321 cities/places based on ACS 2015 data.

Accessing the Data; Using Interactive Tables
Each of the four links below opens a new page providing access to U.S. by city/place interactive tables — by type of subject matter. Use tools and usage notes below table to select operations to perform queries, sort and select columns.
General Demographics
Social Characteristics
Economic Characteristics
Housing Characteristics

How the the Tables/Data Can be Used
The following table shows data derived from the Economic Characteristics table. The top 10 cities/places having the highest median household income ($MHI) are shown. The table also shows population, median family income ($MFI) and per capita income ($PCI). The $250,000 value is a cap; the actual value is $250,000 or higher. Use the interactive tables to create similar views for states of interest. Use the button below the table to select/view cities within a selected metro. Compare attributes of cities of interest to a peer group based on population size.

Visual Analysis of City/Place Population Patterns
Use GIS resources to visually examine city/place demographic-economic patterns. The following view shows patterns of population percent change by city in the Charlotte, NC-SC metro area.

… view developed using the CV XE GIS software.
… click map for larger view and details.

Related Data
Cities/Places Main Section
Citie Population Estimates & Trends, 2010-15

More About Using These Data
Using ACS 1-year and 5-year data

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Housing Value Appreciation by 3-Digit ZIP Code: 2015Q3-2016Q3

.. tools, data and methods to examine housing value appreciation from 2015Q3 to 2016Q3 by 3-digit ZIP code based on the Housing Price Index (HPI).  How is the housing value changing in areas of interest?  How does housing value appreciation compare among a set of ZIP codes? Which ZIP code areas have the highest and lowest housing value appreciation in a state, region custom defined areas of interest? The HPI is calculated in part using home sales price information from Fannie Mae- and Freddie Mac-acquired mortgages. The U.S. all transactions HPI rose 5.6 percent from the 3rd quarter of 2015 to the 3rd quarter of 2016. Rank, compare, evaluate quarterly or annual housing value change for the approximate 900 3-digit ZIP code areas using the interactive table.

3-Digit ZIP Codes with Highest Housing Value Appreciation
Derived from the interactive table below this table shows the ten 3-digit ZIP codes having the highest housing value appreciation over the year 2015Q3-2016Q3. The areas are ranked on percent HPI change (rightmost column).

Gaining Insights in Housing Prices, Conditions & Markets
.. data, tools and methods to assess characteristics, patterns & trends
.. weekly Housing Data Analytics Lab sessions

Patterns of Housing Value Change by 3-Digit ZIP Code
The following graphic shows housing value appreciation 2015Q3-2016Q3 by 3-digit ZIP code based on the HPI. Use related GIS tools to zoom-in, assign labels, show in context with other geography.

– view developed using CVGIS and related GIS project.
– Click graphic for larger view and details;

Examining Housing Appreciation by 3-Digit ZIP Code
Use the interactive table below to view/rank/compare the non-seasonally adjusted “all transactions” HPI for the most recent 5 quarters for all 3-digit ZIP codes. The ranking table shows the latest quarterly HPI data and preceding quarters for one year earlier. This table will be updated on February 24, 2017, with 4th quarter 2016 data and related prior quarterly estimates and re-computed quarterly change values (last column).

Using the Interactive Table
The following graphic illustrates use of the HPI by 3-digit ZIP code interactive table. HPI data are shown for the quarterly period 2015Q3 through 2016Q3. The state selection below the table has been used to select only California ZIP codes. The Group1 button below the table has been used to select ZIP codes with a 2016Q3 HPI value of 175 ore more. The table is then sorted on the rightmost column. The resulting view shows that among all California 3-digit ZIPs having an HPI of 175 or more in 2016Q3, ZIP code 948/Richmond CA had the highest housing value appreciation — a 10.6% increase over the year.

Use the interactive table to examine states or ZIP code groups of interest.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

National Children & Education Statistics Program Updates

.. NCES Program updates .. tools, data & methodology to examine national scope children & education .. school, school district & extended geographic-statistical data with drill-down to school and intersection level. See more about the NCES Program below.

New this Week
ACS 2015 school district demographic-economic interactive tables
– view, compare, analyze selected/all U.S. school districts
– more focused blog updates coming soon.

School Districts with Highest Median Household Income
Use the interactive table to examine economic characteristics of school districts. Below is a list of the 10 school districts having the highest median household income developed using the Economic Characteristics interactive table. Develop similar views for metros and states of interest.

– ranked on item E062 — median household income.
– click graphic for larger view.

Use GIS tools to develop thematic pattern maps such as the one shown below with NCES GIS projects. Select from hundreds of statistical measures. Create your own regional;/district views. Integrate other data.

Patterns of Economic Prosperity by School District
– median household income (item E062 in table)

– view developed with CVGIS software & related GIS project and data.
– click graphic for larger view.

See the School Districts Economic Characteristics Interactive Table.

About the National Children & Education Statistics Program
The National Children & Education Statistics (NCES) Program provides access to tools, data & methodology to examine national scope children’s demographics & education-related characteristics. These resources enable stakeholders to view and analyze detailed geographic and statistical data at the school, neighborhood, community, attendance zone, school district and higher level geography. Integrate these data with drill-down demographic-economic data to the census block and intersection levels. Examine characteristics of schools, school districts and education data with related and higher level geography including urban/rural, cities, counties, metros, state and the U.S.

See NCES Main Section.

Contents: Summary of NCES Program Resources
Click a link to view more detail on a selected topic.
Updates: New Resources, Events & Related Topics
Analytics, Blogs, Studies
Using Software Tools & Datasets
01 Mapping & Visual Analysis Tools
02 School District Annual Demographic-Economic Data Resources
03 Children’s Demographics & Living Environment by School District
04 School District Enrollment & Operational Characteristics
05 School District Finances: Sources & Uses of Funds
06 School District Geographic Size & Characteristics
07 School District-ZIP Code Area Relationship Table
08 K-12 Public Schools
09 K-12 Private Schools
10 K-12 Public School Attendance Zones
11 K-12 Public Schools by Urban/Rural Status
12 Census Tract Demographic-Economic Characteristics
13 Metropolitan Area Situation & Outlook Reports

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Urban Area Demographic Trends 2010-15

.. tools and analytics to examine all urban areas with particular focus on Urbanized Areas and demographic change between 2010 and 2015 .. examining urban areas in context of metropolitan areas .. the four fastest growing Urbanized Areas (UAs) from 2010 to 2015 were in Texas. McKinney, TX UA led the nation with an increase of 27.5% in total population. View, rank, compare 2010 and 2015 demographic characteristics for UAs using the interactive table in this related section. Urban areas (Urbanized Areas and Urban Clusters) are important for many reasons. More than metros and cities, urban area geography better reflects how the urban and rural population is changing. Both metros and cities can change geographic boundary over the years. Urban areas are based on Census 2010 and unchanging between 2010 and 2020. Annual demographic updates are available from the American Community Survey (ACS 2015).

This section is focused on tools and analytics to examine all urban areas with particular focus on Urbanized Areas and demographic change between 2010 and 2015. Use the interactive table >in the related section to view, rank, query urban areas and demographic change for larger urban areas. Use the related GIS tools and data to develop related thematic and relationship maps. Perform geospatial analysis of geographic and demographic-economic characteristics using the resources we have developed. Gain insights into patterns that might affect you. Use these resources to collaborate on how, where, what, when and why of change.

McKinney TX Urbanized Area in Context of City
The McKinney, TX UA (bold orange pattern) is shown in context of McKinney city (cross-hatched area) and other urban areas (lighter orange pattern). It is easy to see that some parts of the city are rural and that the UA extends beyond the city in many areas. See more about the McKinney UA and in comparison to other urban areas using the interactive table.


– view created using CVGIS software and related GIS project.

Most Urbanized Areas (UAs, 435 of 487) have population 65,000 population or more resulting in the availability of annual demographic-economic estimates. Data are fresher than available for smaller urban areas (ACS 5-year estimates for areas under 65,000). This means more current data to assess more recent characteristics. As annual data are available UAs enabling analysis of change over time. The “2010s” marks the first time these refreshed, time series-like data have been available for urban areas. Businesses and those examining change performing market analysis benefit from the ability to examine characteristics or urban areas in combination with counties and metros.

Houston Urbanized Area in Context of Houston Metro
The Houston metro has a bold brown boundary. It is easy to see how the Houston UA (darker orange fill pattern) geographically relates to the metro. Other urban areas (all) are shown with a lighter orange fill pattern. It is easy to see the urban/pattern character of the general region. While the Houston UA is the largest, there are four UAs that intersect with Houston metro. Use the interactive table below to view their names and characteristics.


– view created using CVGIS software and related GIS project.

Urbanized Areas tend to be associated with metropolitan areas having a similar name. But very often there are multiple UAs within a metro; sometimes one is not dominant. Often there are several UAs in a metro having similar size. Use the interactive table below to view the relationship of UAs and metros (CBSAs).

Using Interactive Table
Use the interactive table to view, rank, compare, query urban areas based on a selection of demographic measures. The following graphic illustrates how the table can be used. Click graphic for larger view.

The graphic shows the urbanized areas ranked in descending order based on 2010-2015 population. The rightmost column shows the area percent change in population over the period.

Fastest Growing Urbanized Areas, 2010-15

Try it yourself. Use the table to examine urban area patterns and characteristics based on your selected criteria.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

ZIP Codes with Highest & Lowest Economic Prosperity

.. the latest data for ZIP Code Areas show that eleven had a median household income of $250,000 or more during the period 2011-15. More than 20 ZIP code areas had a median housing value of $2,000,000 or more. Contrast these ZIP code areas with higher economic prosperity with the more than 150 ZIP codes that had a median housing value of less than $30,000.  Use the interactive table in this related Web section to see which ZIPs meet these and other criteria.

ZIP Codes with MHI $100,000 or More; Dallas, TX Metro
Analyzing economic prosperity patterns using combined types of small area geography … the following graphic shows ZIP code areas a red markers with the median household income or $100,000 or more in context of median household income by census tract thematic pattern. Click graphic for larger view with more detail. Expand browser window for best quality view. Use CV XE GIS software and associated GIS project to develop variations of this view for your areas of interest. .

– view developed with CV XE GIS software.

This section reviews measures of economic prosperity for all ZIP code areas. These data were released in December 2016. This section updates with new data December 2017. See the list of all ZIP ccdes showing population, housing and economic characteristics in the interactive table shown below. Use the interactive table to view, rank, compare and query ZIP code attributes.

Examining demographic-economic characteristics by ZIP code is important for several reasons. We are familiar with our own ZIP codes as a geographic location. We tend to be interested in our area compared to other areas. ZIP codes provide an easy way to do that. Also, many secondary data resources are tabulated by ZIP code area; some important data are only available by ZIP code. See more about ZIP Code areas.

Resources & Methods to Examine Small Area Demographics
• See related ZIP Code Demographic-Economic Interactive Tables
  .. extended subject matter
• See related Census Tract Code Demographic-Economic Interactive Tables
• Examine ZIP Code Urban/Rural Characteristics
• Examine ZIP Code Business Establishment patterns
• Examine ZIP Code Housing Price Index patterns
• Join us in the weekly Data Analytics Lab Sessions
  .. reviewing applications using these and related data.

ZIP Code Areas with $MHI $100,000 or More
The following graphic shows ZIP code areas as red markers having median household income or $100,000 or more. Click graphic for larger view with more detail. Expand browser window for best quality view. Use CV XE GIS software and associated GIS project to develop variations of this view; integrate other data; select alternative ACS 2015 subject matter.

– view developed with CV XE GIS software. Click graphic for larger view.

ZIP Code Areas with $MHV Less than $30,000
The following graphic shows ZIP code areas as orange markers having median housing value of less than $30,000. Click graphic for larger view with more detail. Expand browser window for best quality view. Use CV XE GIS software and associated GIS project to develop variations of this view; integrate other data; select alternative ACS 2015 subject matter.

– view developed with CV XE GIS software. Click graphic for larger view.

ZIP Code Areas: Population & Economic Prosperity
  — Interactive Table –
Use the interactive table to view, rank, compare, query ZIP codes based on a selection of demographic-economic measures. The following graphic illustrates how the table can be used to examine patterns of the three digit ZIP code area (San Diego) by 5-digit ZIP code. Table operations are used to select ZIP codes in the 921 3-digit area (containing 39 5-digit ZIP codes). These 39 ZIP code are then ranked in descending order on median household income. See results in the table shown below. ZIP code 92145 has the highest $MHI in this group with $228.036.

– click graphic for larger view.

Try it yourself. Use the table to examine a set of ZIP codes on your selected criteria in for a state/area of interest.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

2016 Presidential Election – Voting & Citizen Voting Age Population by County

In 2015, the U.S. citizen voting age population (CVAP) was 227,019,486 of the total U.S. resident population of 321,418,821 (70.6%). 2016 CVAP data are not yet available. In the 2016 presidential election, 128,298,470 votes were cast — approximately 56% of the citizen voting age population. For individual counties the 2016 presidential election vote ranged from 16% of the CVAP to near 100%. Use the interactive table in this section to examine characteristics of the 2016 presidential election vote and citizen voting age population by county.

This section reviews access to tools to view/analyze characteristics of the U.S. voting population (ages 18 and older and citizen) and participation in the 2016 presidential election. Data are based on Census Bureau annual population estimates, American Community Survey 2010-14 5 year (ACS 2014) Citizen Voting Age Population (CVAP) special tabulation and 2016 presidential election results.

Visual Analysis of 2016 Presidential Election Vote by County
The following graphic shows the 2016 presidential vote as a percent of the citizen voting age population.

– Click graphic for larger view.
– View developed with CV XE GIS software.

U.S. Electorate Profile: Characteristics of the Citizen, 18 and Older Population

– based on 2015 American Community Survey 1-Year estimates
*Except where noted, “race” refers to people reporting only one race.
**Hispanic refers to the ethnicity category and may be of any race.
***Households with citizen householders.

U.S. by County Interactive Table Analysis 
Use the interactive table to examine characteristics of the 2016 presidential election vote and citizen voting age population by county. The following graphic illustrates how the table can be used to examine patterns in the Houston, TX metro by county. The Find in CBSA button is used below the table to select only counties in this CBSA/metro. The rightmost column header cell is clicked to rank counties on the voter participation rate for the 2016 presidential election.

– click graphic for larger view.

Try it yourself. Use the table to examine a set of counties in a metro or state of interest.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Monthly Local Area Employment Situation; 2015-2016

.. this update on the monthly and over-the-year (August 2015-August 2016) change in the local area employment situation shows general improvement. Yet many areas continue to face challenges due to both oil prices, the energy situation and other factors.  This section provides access to interactive data and GIS/mapping tools that enable viewing and analysis of the monthly labor market characteristics and trends by county and metro for the U.S. See the related Web section for more detail. The civilian labor force, employment, unemployment and unemployment rate are estimated monthly with only a two month lag between the reference date and the data access date (e.g., August 2016 data are available in October 2016).

Unemployment Rate by County – August 2016
The following graphic shows the unemployment rate for each county.

— view created using CV XE GIS and associated LAES GIS Project
— click graphic for larger showing legend details.

As shown in the illustrative interactive table view below, seven of the ten MSAs having the highest August 2016 unemployment rate were in California. Use the table to examine characteristics of counties and metros in regions of interest. As apparent from the monthly patterns shown in the table, some areas are impacted by season factors, but others are not.

View Labor Market Characteristics section in the Metropolitan Area Situation & Outlook Reports, providing the same scope of data as in the table below integrated with other data. See example for the Dallas, TX MSA.

The LAES data and this section are updated monthly. The LAES data, and their their extension, are part of the ProximityOne Situation & Outlook database and information system. ProximityOne extends the LAES data in several ways including monthly update projections of the employment situation one year ahead.

Interactive Analysis
The following graphic shows an illustrative view of the interactive LAES table. Seven of the ten MSAs having the highest August 2016 unemployment rate were in California (ranked on far right column in descending order). Use the table to examine characteristics of counties and metros in regions of interest. Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.