Category Archives: Chcago, IL

Life Expectancy Change by County, 1980-2014

.. data and tools to examine changing life expectancy by county. Use the interactive table to examine life expectancy characteristics and related demographics for counties and regions of interest. Use the related GIS project and datasets to examine life expectancy contextually with other geography & subject matter. See details below. These data and tools are part of the ProximityOne health data analytics resources.

Life expectancy is rising overall in the United States, but in some areas, death rates are going in the other direction. These geographic disparities are widening.

Life Expectancy Change by County, 1980-2014
The following graphic shows patterns of the change in life expectancy change from 1980 to 2014. Click graphic for larger view. Expand browser window for best quality view.

– View developed using CV XE GIS and related GIS project.
– see below in this section about using this GIS project.

Life expectancy is greatest in the high country of central Colorado, but in many pockets of the U.S., life expectancy is more than 20 years lower. These data are based on research and analysis by the University of Washington Institute for Health Metrics and Evaluation.

Examining life expectancy by county allows for tracking geographic disparities over time and assessing factors related to these disparities. This information is potentially useful for policymakers, clinicians, and researchers seeking to reduce disparities and increase longevity.

Life Expectancy Change by County, 1980-2014 — drill-down view
— South Central Region
The following graphic shows patterns of the change in life expectancy change from 1980 to 2014. Click graphic for larger view. Expand browser window for best quality view. The larger graphic shows counties labeled with change in life expectancy from 1980-2014.

– View developed using CV XE GIS and related GIS project.
– see below in this section about using this GIS project.

Additional Views — use the GIS project to create your own views
.. click link to view
Alaska
Hawaii
Minneapolis metro

Using the Interactive Table
Use the interactive table to view, rank, compare life expectancy characteristics. This graphic shows California counties ranked on life expectancy change 1980-2014 in descending order. Select states or metros of interest. Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

115th Congressional Districts: Analysis and Insights

.. interpretative data analytics; tools, data & methods ..  this section is focused on 115th Congressional District geographic, demographic and economic patterns and characteristics. Use tools and data reviewed here to examine/analyze characteristics of one congressional district (CD) or a group of CDs based on state, party or other attribute. Use the GIS resources described here for general CD reference/pattern/analytical views, to examine current demographics and demographic change and for redistricting applications. See this related Web section for more details.

Examining the 115th Congressional Districts
• the 115th Congress runs from January 2017 through December 2018.
• FL, MN, NC, VA have redistricted since the 114th CD vintage;
  .. some 115th CDs have new boundaries compared the 114th CDs.
• view, rank, compare CDs using the interactive table.
  .. table uses ACS 2015 data for 115th CDs & include incumbent attributes.
  .. examine districts by party affiliation.
• use these more detailed 114th CD interactive tables
  .. data based on 2015 American Community Survey – ACS 2015.
  .. corresponding data for the 115th CDs from ACS 2016 available Sept 2017.
• use the new GIS project including 114th & 115th CDs described below.
  .. create CD thematic and reference maps;
  .. examine CDs in context of other geography & subject matter.
• join us in the April 25 Data Analytics Lab session

Visual Analysis of Congressional Districts
The following views 1) provide insights into patterns among the 115th CDs and 2) illustrate how 114th to 115th geographic change can be examined. Use CV XE GIS software with the GIS project to create and examine alternative views.

Patterns of Household Income by 115th Congressional District
The following graphic shows the patterns of the median household income by 115th Congressional District based on the American Community Survey 2015 1-year estimates (ACS2015). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Charlotte NC-SC Metro Area
  – with 114th/115th Congressional District 12

The following graphic shows North Carolina CD 12 with 114th boundary (blue) and 115th boundary (pale yellow) and Charlotte metro bold brown boundary. Click graphic for larger view with more detail. Expand browser window for best view.

.. view developed using the CVGIS software.

• View zoom-in to Charlotte city & Mecklenburg County.

115th Congressional District Interactive Table
Use the interactive table to examine characteristics of one congressional district (CD) or a group of CDs. The following graphic illustrates use of the interactive table. First, the party type was selected, Democratic incumbents in this example. Next, the income and educational attainment columns were selected. Third, the set of districts were sorted on median household income. It is quick and easy to determine that CA18 has the highest median household income and that the MHI is $1,139,900. Try using the table to examine districts of interest.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

County 5-Year Trends: Income & Income Inequality

.. tools and data to examine how the U.S. by county household income and income inequality are changing … how is household income changing in counties of interest? What are the trends; what is causing the change? What are the characteristics of income inequality and how is it changing? How might this change impact your living environment and business?

This section provides access to tools and data to examine U.S. by county measures of household income and income inequality between two 5-year periods (2006-10 and 2011-2015). These data can provide insights into how household income and income inequality are changing for one county, a group of counties and the U.S. overall. Use the interactive table to view median household income and measures income inequality for all counties. See more detail about these topics here. Measures of income inequality can be estimates/examined using the Gini Index.

The Gini Index & Measuring Income Inequality
The Gini Index is a dimensionless statistic that can be used as a measure of income inequality. The Gini index varies from 0 to 1, with a 0 indicating perfect equality, where there is a proportional distribution of income. A Gini index of 1 indicates perfect inequality, where one household has all the income and all others have no income.

At the national level, the 2015 Gini index for U.S. was 0.482 (based on 2015 ACS 1-year estimates) was significantly higher than in the 2014 ACS Index of 0.480 (based on 2014 ACS 1-year estimates). This increase suggests that income inequality increased across the country.

Examining Household Income & Income Inequality Patterns & Change
The following two graphics show patterns of the GIni Index by county. The first view is based on the American Community Survey (ACS) 2010 5-year estimates and the second is based on the ACS 2015 5-year estimates. The ACS 2010 estimates are based on survey respondents during the period 2006 through 2010. The ACS 2015 estimates are based on survey respondents during the period 2011 through 2015. One view compared with the other show how patterns of income inequality has changed at the county/regional level between these two 5-year periods.

Following these Income Inequality views are two corresponding views of median household income; using data from ACS 2010 and ACS 2015. Use CV XE GIS software with the GIS project to create and examine alternative views.

Patterns of Income Inequality by County; ACS 2010
The following graphic shows the patterns of the Gini Index by county based on the American Community Survey 2010 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Income Inequality by County; ACS 2015
The following graphic shows the patterns of the Gini Index by county based on the American Community Survey 2015 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Economic Prosperity by County; ACS 2010
The following graphic shows the patterns of median household income ($MHI) by county based on the American Community Survey 2010 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Patterns of Economic Prosperity by County; ACS 2015
The following graphic shows the patterns of median household income ($MHI) by county based on the American Community Survey 2015 5-year estimates (ACS1115). The legend in the lower left shows data intervals and color/pattern assignment

.. view developed with ProximityOne CV XE GIS and related GIS project.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Creating Custom School District Maps

…tools & data to map & geospatially analyze school districts. Ready-to-use state-by-state GIS projects may be downloaded enabling you to view and create custom maps almost instantly. Benefit from the power of using GIS software to perform tasks not available on Web-based mapping options. Use the latest school district and related shapefiles. See more information about using these resources in this related Web section.

Federal Revenue per Student by School District
Create views similar to the one shown below. Optionally combine layers as illstrated here by showing four Texas metros.

.. view developed with CV XE GIS and related GIS project.

Extending Reference and Analytical Possibilities

Texas by School District
Examine reference maps at the state, regional or local level. Optionally combine with roads/streets and other layers.

Patterns of Economic Prosperity by School District
Select from many ready-to-use demographic-economic subject matter items to create custom pattern views.

Drill-down — Houston Metro Area by School District
Zoom-in to a school district of interest. Set attributes of district as shown here.

County/School District
Visually examine the boundaries or school districts and counties. This view shows Harris County, TX area; select a county of interest.

Drill-down to Street Level
Add road/street and other layers. Drill-down within Fort Bend ISD, Houston metro, showing general earth surface features with streets layers. Mouse used to click on street (see pointer) and display mini-profile of street segment attributes.

Use for Analysis, Reference or in the Classroom
Schools and teachers: consider using these resources for classroom use. Familiarize students about how GIS resources can be used with a minimum of learning time and no cost. Enable students to use their own geography and adapt that learning to more general geography. See related Mapping Statistical Data ready-to-use GIS projects.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Examining County Migration: 2010-2016

.. tools and data to examine U.S. by county migration 2010 to 2016 … is the population moving away or into your counties of interest? What are the trends; what is causing the change? What are the characteristics of the population moving in and out? How might this impact your living environment and business?

The total net international migration among all counties 7/1/2010 – 7/1/2016 was 5,641,260, an annual average of 940,432. The sum of net domestic migration among counties is zero by definition, but domestic migration among counties varies radically by size and direction. This section is focused on U.S. by county migration from 2010 to 2016. Migration is one component of change used to develop population estimates. See more about county population estimates and components of change in this related Web section.

Largest 10 Counties Based on 2016 Population
This table shows how domestic migration varies widely among the most populated counties. Use this interactive table to develop your own custom views for counties of interest.

Patterns of Population Change by County, 2010-2016
– the role and impact of migration
The following graphic shows how counties have gained population (blue and green) and lost population (orange and red) during the period 2010 to 2016. Click graphic for larger view; expand browser window for best quality view.

.. view developed with ProximityOne CV XE GIS and related GIS project.

Examining Population Components of Change
– net migration and natural change
Population change can be examined in terms of components of change. There are three components of change: births, deaths, and migration. The change in the population from births and deaths is often combined and referred to as natural increase or natural change. Populations grow or shrink depending on if they gain people faster than they lose them. Examining a county’s unique combination of natural change and migration provides insights into why its population is changing and how quickly the change is occurring.

Using the Interactive Table
– examining migration by county
Use the interactive table to examine characters of counties by states, metro or peer group. The following graphic illustrates use of the interactive table to view net migration for the Houston metro by county. The net migration button was used to select only the net migration columns, FindCBSA button used to show only counties in this metro and the final step was to sort the resulting table on 2016 population. Click graphic for larger view.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Tools to Analyze County Demographic-Economic Characteristics

.. demographic-economic characteristics of counties are essential for business development, market analysis, planning, economic development, program management and general awareness of patterns and trends. This section provides access to data and tools to examine these data for all counties in the U.S. This annual update includes geographic area characteristics based on ACS 2015 data.  The tools/data are organized into four related sections summarized below.

1. General Demographics
View interactive table at http://proximityone.com/us155dp1.htm
Patterns of School Age Population by County
Use GIS tools to visually examine county general demographics as illustrated below. The following view shows patterns of percent population ages 5 to 17 years of age by county — item D001-D004-D018 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

2. Social Characteristics
View interactive table at http://proximityone.com/us155dp2.htm 
Patterns of Educational Attainment by County
– percent college graduate
Use GIS tools to visually examine county social characteristics as illustrated below. The following view shows patterns of percent college graduate by county — item S067 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

3. Economic Characteristics
View interactive table at http://proximityone.com/us155dp3.htm 
Patterns of Median Household Income by County
Use GIS tools to visually examine county economic characteristics as illustrated below. The following view shows patterns median household income by county — item E062 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

4. Housing Characteristics
View interactive table at http://proximityone.com/us155dp4.htm 
Patterns of Median Housing Value by County
Use GIS tools to visually examine county housing characteristics as illustrated below. The following view shows patterns median housing value by county — item E062 in the interactive table. Create your own views.

… view developed using the CV XE GIS software.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.

Monthly Local Area Employment Situation: 2017

.. tools & data to examine the local area employment situation .. this update on the monthly and over-the-year (Jan 2016-Jan 2017) change in the local area employment situation shows general improvement. Yet many areas continue to face challenges due to both oil prices, the energy situation and other factors.  This section provides access to interactive data and GIS/mapping tools that enable viewing and analysis of the monthly labor market characteristics and trends by county and metro for the U.S. See the related Web section for more detail. The civilian labor force, employment, unemployment and unemployment rate are estimated monthly with only a two month lag between the reference date and the data access date (e.g., March 2017 data are available in May 2017).

Use our new tools to develop your own LAES U.S. by county time series datasets. Link your data with LAES data. Run the application monthly extending/updating your datasets. Optionally use our 6-month ahead employment situation projection feature. See details

Unemployment Rate by County – January 2017
The following graphic shows the unemployment rate for each county.

— view created using CV XE GIS and associated LAES GIS Project
— click graphic for larger showing legend details.

New with this post are the monthly 2016 monthly data on the labor force, employment, unemployment and unemployment rate. Use the interactive table to view/analyze these data; compare annual over the year change, January 2016 to January 2017.

View Labor Market Characteristics section in the Metropolitan Area Situation & Outlook Reports, providing the same scope of data as in the table below integrated with other data. See example for the Dallas, TX MSA.

The LAES data and this section are updated monthly. The LAES data, and their their extension, are part of the ProximityOne Situation & Outlook database and information system. ProximityOne extends the LAES data in several ways including monthly update projections of the employment situation.

Interactive Analysis
The following graphic shows an illustrative view of the interactive LAES table. In January 2017, 149 counties experienced an unemployment rate of 10% or more. The graphic shows counties experienced highest unemployment rates. Use the table to examine characteristics of counties and metros in regions of interest. Click graphic for larger view.

Metro by County; Integrating Total Population
The following graphic shows an illustrative view of the interactive LAES table focused on the Chicago MSA. By using the query tools, view characteristics of metro component counties for any metro. This view shows Chicago metro counties ranked on January 2017 unemployment rate (only 10 of the 14 metro counties shown in this view). Click graphic for larger view.

The above view shows the total population (latest official estimates) as well as employment characteristics.

More About Population Patterns & Trends
U.S. by county population interactive tables & datasets:
  • Population & Components of Change 2010-2016 – new March 2017.
  • Population Projections to 2060 2010-2060 – updated March 2017.

Join me in a Data Analytics Lab session to discuss more details about accessing and using wide-ranging demographic-economic data and data analytics. Learn more about using these data for areas and applications of interest.

About the Author
— Warren Glimpse is former senior Census Bureau statistician responsible for innovative data access and use operations. He is also the former associate director of the U.S. Office of Federal Statistical Policy and Standards for data access and use. He has more than 20 years of experience in the private sector developing data resources and tools for integration and analysis of geographic, demographic, economic and business data. Contact Warren. Join Warren on LinkedIn.